[1] 董凌, 年珩, 范越, 等. 能源互联网背景下共享储能的商业模式探索与实践[J]. 电力建设, 2020, 41(4): 38–44 DONG Ling, NIAN Heng, FAN Yue, et al. Exploration and practice of business model of shared energy storage in energy Internet[J]. Electric Power Construction, 2020, 41(4): 38–44 [2] 董昱, 范高锋, 董存, 等. 电力系统配置储能分析计算方法[J]. 中国电力, 2022, 55(1): 26–36 DONG Yu, FAN Gaofeng, DONG Cun,et al. Analysis and calculation of energy storage configuration in power system[J]. Electric Power, 2022, 55(1): 26–36 [3] 张明霞, 闫涛, 来小康, 等. 电网新功能形态下储能技术的发展愿景和技术路径[J]. 电网技术, 2018, 42(5): 1370–1377 ZHANG Mingxia, YAN Tao, LAI Xiaokang, et al. Technology vision and route of energy storage under new power grid function configuration[J]. Power System Technology, 2018, 42(5): 1370–1377 [4] 刘畅, 卓建坤, 赵东明, 等. 利用储能系统实现可再生能源微电网灵活安全运行的研究综述[J]. 中国电机工程学报, 2020, 40(1): 1–18,369 LIU Chang, ZHUO Jiankun, ZHAO Dongming, et al. A review on the utilization of energy storage system for the flexible and safe operation of renewable energy microgrids[J]. Proceedings of the CSEE, 2020, 40(1): 1–18,369 [5] 张东辉,康重庆,卢洵,等. 高比例新能源系统中储能配置规模论证[J]. 南方电网技术, 2022, 16(4): 3–11 ZHANG Donghui, KANG Chongqing, LU Xun, et al. Demonstration on the scale of energy storage deployment in high-proportion new energy power system[J]. Southern Power System Technology, 2022, 16(4): 3–11 [6] 石涛, 张斌, 晁勤, 等. 兼顾平抑风电波动和补偿预测误差的混合储能容量经济配比与优化控制[J]. 电网技术, 2016, 40(2): 477–483 SHI Tao, ZHANG Bin, CHAO Qin, et al. Economic storage ratio and optimal control of hybrid energy capacity combining stabilized wind power fluctuations with compensated predictive errors[J]. Power System Technology, 2016, 40(2): 477–483 [7] 袁小明, 程时杰, 文劲宇. 储能技术在解决大规模风电并网问题中的应用前景分析[J]. 电力系统自动化, 2013, 37(1): 14–18 YUAN Xiaoming, CHENG Shijie, WEN Jinyu. Prospects analysis of energy storage application in grid integration of large-scale wind power[J]. Automation of Electric Power Systems, 2013, 37(1): 14–18 [8] 黎静华, 汪赛. 兼顾技术性和经济性的储能辅助调峰组合方案优化[J]. 电力系统自动化, 2017, 41(9): 44–50,150 LI Jinghua, WANG Sai. Optimal combined peak-shaving scheme using energy storage for auxiliary considering both technology and economy[J]. Automation of Electric Power Systems, 2017, 41(9): 44–50,150 [9] PARK C, KNAZKINS V, SEVILLA F R S, et al. On the estimation of an optimum size of Energy Storage System for local load shifting[C]//2015 IEEE Power & Energy Society General Meeting. Denver, CO, USA. IEEE, : 1-5. [10] 黎淑娟, 李欣然, 黄际元, 等. 面向电网全调频过程的高倍率钛酸锂电池容量配置[J]. 高电压技术, 2018, 44(1): 145–151 LI Shujuan, LI Xinran, HUANG Jiyuan, et al. Capacity configuration of lithium titanate battery in whole grid frequency regulation based on rate characteristic[J]. High Voltage Engineering, 2018, 44(1): 145–151 [11] 丁冬, 杨水丽, 李建林, 等. 辅助火电机组参与电网调频的BESS容量配置[J]. 储能科学与技术, 2014, 3(4): 302–307 DING Dong, YANG Shuili, LI Jianlin, et al. Capacity configuration of battery energy storage as an alternative to thermal power units for frequency regulation[J]. Energy Storage Science and Technology, 2014, 3(4): 302–307 [12] 程浩原, 艾芊, 高扬, 等. 关于细胞-组织视角的能源互联网分布式自治系统形态特征的讨论[J]. 全球能源互联网, 2019, 2(5): 466–475 CHENG Haoyuan, AI Qian, GAO Yang, et al. Morphological characteristics of distributed autonomous system in energy Internet from the perspective of cell-tissue[J]. Journal of Global Energy Interconnection, 2019, 2(5): 466–475 [13] GAO Y, AI Q, WANG X Y, et al. Distributed cooperative economic optimization strategy of a regional energy network based on energy cell–tissue architecture[J]. IEEE Transactions on Industrial Informatics, 2019, 15(9): 5182–5193. [14] DAI R, ESMAEILBEIGI R, CHARKHGARD H. The utilization of shared energy storage in energy systems: a comprehensive review[J]. IEEE Transactions on Smart Grid, 2021, 12(4): 3163–3174. [15] 康重庆, 刘静琨, 张宁. 未来电力系统储能的新形态: 云储能[J]. 电力系统自动化, 2017, 41(21): 2–8,16 KANG Chongqing, LIU Jingkun, ZHANG Ning. A new form of energy storage in future power system: cloud energy storage[J]. Automation of Electric Power Systems, 2017, 41(21): 2–8,16 [16] 王仕俊, 平常, 薛国斌. 考虑共享储能的社区综合能源系统协同优化研究[J]. 中国电力, 2018, 51(8): 77–84 WANG Shijun, PING Chang, XUE Guobin. Synergic optimization of community energy Internet considering the shared energy storage[J]. Electric Power, 2018, 51(8): 77–84 [17] 李咸善, 解仕杰, 方子健, 等. 多微电网共享储能的优化配置及其成本分摊[J]. 电力自动化设备, 2021, 41(10): 44–51 LI Xianshan, XIE Shijie, FANG Zijian, et al. Optimal configuration of shared energy storage for multi-microgrid and its cost allocation[J]. Electric Power Automation Equipment, 2021, 41(10): 44–51 [18] 裴佑, 裴哲义, 邱伟强, 等. 基于区块链的共享储能联合调频分散交易机制设计[J]. 电力自动化设备, 2021, 41(10): 138–145 PEI You, PEI Zheyi, QIU Weiqiang, et al. Design of decentralized trading mechanism for shared energy storage joint frequency regulation based on blockchain[J]. Electric Power Automation Equipment, 2021, 41(10): 138–145 [19] FLEISCHHACKER A, AUER H, LETTNER G, et al. Sharing solar PV and energy storage in apartment buildings: resource allocation and pricing[J]. IEEE Transactions on Smart Grid, 2019, 10(4): 3963–3973. [20] ROBERTS M B, BRUCE A, MACGILL I. Impact of shared battery energy storage systems on photovoltaic self-consumption and electricity bills in apartment buildings[J]. Applied Energy, 2019, 245: 78–95. [21] 黄开艺, 艾芊, 张宇帆, 等. 基于能源细胞-组织架构的区域能源网需求响应研究挑战与展望[J]. 电网技术, 2019, 43(9): 3149–3160 HUANG Kaiyi, AI Qian, ZHANG Yufan, et al. Challenges and prospects of regional energy network demand response based on energy cell–tissue architecture[J]. Power System Technology, 2019, 43(9): 3149–3160 [22] Shapley L S. 17. A value for n-person games[M]. Princeton University Press, 2016. [23] 徐秋爽, 胡石清, 程细玉. Shapley值特点及其局限的讨论[J]. 数学的实践与认识, 2013, 43(4): 44–52 XU Qiushuang, HU Shiqing, CHENG Xiyu. Shapley value and the limitation of it[J]. Mathematics in Practice and Theory, 2013, 43(4): 44–52 [24] FERNáNDEZ CABALLERO J C, MARTíNEZ F J, HERVáS C, et al. Sensitivity versus accuracy in multiclass problems using memetic Pareto evolutionary neural networks[J]. IEEE Transactions on Neural Networks, 2010, 21(5): 750–770.
|