[1] 国家能源局. 我国可再生发电装机总容量突破11亿千瓦[DB/OL]. (2022-06-24) [2022-11-08] http://www.nea.gov.cn/2022-06/24/c_1310631956.htm. [2] 吴强, 韩俊, 金颋, 等. 冷热电联供型孤岛微电网环保经济调度模型[J]. 中国电力, 2021, 54(12): 137–142 WU Qiang, HAN Jun, JIN Ting, et al. Environmental and economic dispatch model for island microgrid of combined cooling, heating and power[J]. Electric Power, 2021, 54(12): 137–142 [3] 李相俊, 马会萌, 姜倩. 新能源侧储能配置技术研究综述[J]. 中国电力, 2022, 55(1): 13–25 LI Xiangjun, MA Huimeng, JIANG Qian. Review of energy storage configuration technology on renewable energy side[J]. Electric Power, 2022, 55(1): 13–25 [4] 林其友, 蒋文良, 李媛媛, 等. 基于母线电压分层的直流微网系统协调控制[J]. 中国电力, 2022, 55(2): 166–171, 180 LIN Qiyou, JIANG Wenliang, LI Yuanyuan, et al. Coordinated control of DC microgrid system based on bus voltage stratification[J]. Electric Power, 2022, 55(2): 166–171, 180 [5] 陈景文, 周媛, 李晓飞, 等. 光储直流微网混合储能控制策略研究[J]. 智慧电力, 2022, 50(1): 14–20, 87 CHEN Jingwen, ZHOU Yuan, LI Xiaofei, et al. Hybrid energy storage control strategy of optical storage DC microgrid[J]. Smart Power, 2022, 50(1): 14–20, 87 [6] 陈友芹, 蒋炯, 殷展翔, 等. 基于NCPSO的微网群优化调度策略研究[J]. 太阳能学报, 2022, 43(8): 477–483 CHEN Youqin, JIANG Jiong, YIN Zhanxiang, et al. Research on optimal scheduling strategy of microgrid clusters based on NCPSO[J]. Acta Energiae Solaris Sinica, 2022, 43(8): 477–483 [7] 张政林, 张惠娟, 孙文治, 等. 含混合储能的微电网能量优化管理[J]. 科学技术与工程, 2022, 22(25): 11049–11056 ZHANG Zhenglin, ZHANG Huijuan, SUN Wenzhi, et al. Optimal energy management of microgrid with hybrid energy storage[J]. Science Technology and Engineering, 2022, 22(25): 11049–11056 [8] 张祥宇, 舒一楠, 付媛, 等. 含虚拟储能直流微电网的源荷储能量协同优化控制[J/OL]. 高电压技术: 1–12[2023-05-17]. https: //doi. org/10.13336/j. 1003-6520. hve. 20221350. ZHANG Xiangyu, SHU Yinan, FU Yuan, et al. Cooperative optimization control of source-load-storage energy in DC microgrid with virtual energy storage [J/OL]. High Voltage Engineering: 1–12[2023-05-17]. https://doi.org/10.13336/j.1003-6520.hve.20221350. [9] 柏晨, 王念春, 卓青. 绿色数据中心的供电运行控制和能量管理[J]. 电源学报, 2021, 19(1): 107–114 BO Chen, WANG Nianchun, ZHUO Qing. Power supply operation control and energy management in green data center[J]. Journal of Power Supply, 2021, 19(1): 107–114 [10] 王毅, 张丽荣, 李和明, 等. 风电直流微网的电压分层协调控制[J]. 中国电机工程学报, 2013, 33(4): 16–24, 4 WANG Yi, ZHANG Lirong, LI Heming, et al. Hierarchical coordinated control of wind turbine-based DC microgrid[J]. Proceedings of the CSEE, 2013, 33(4): 16–24, 4 [11] 宋宪可, 樊艳芳, 刘群杰, 等. 基于功率信号判别的光-储-燃直流微网协调控制策略研究[J]. 电力电容器与无功补偿, 2020, 41(3): 197–204 SONG Xianke, FAN Yanfang, LIU Qunjie, et al. Study on DC microgrid coordination control strategy of optical-storage-fuel based on power signal discrimination[J]. Power Capacitor & Reactive Power Compensation, 2020, 41(3): 197–204 [12] 康家玉, 史晨雨, 王素娥, 等. 基于自适应下垂控制的多储能直流微网能量管理策略[J]. 现代电力, 2022, 39(2): 219–227 KANG Jiayu, SHI Chenyu, WANG Sue, et al. Energy management strategy for DC microgrid of multi-energy storage based on adaptive droop control[J]. Modern Electric Power, 2022, 39(2): 219–227 [13] 谭文娟, 陈燕东, 杨苓, 等. 光储直流微网能量协调控制方法[J]. 电源学报, 2018, 16(2): 76–85 TAN Wenjuan, CHEN Yandong, YANG Ling, et al. Energy coordinated control method for DC microgrid with photovoltaic[J]. Journal of Power Supply, 2018, 16(2): 76–85 [14] 王毅, 于明, 李永刚. 基于改进微分进化算法的风电直流微网能量管理[J]. 电网技术, 2015, 39(9): 2392–2397 WANG Yi, YU Ming, LI Yonggang. Energy management of wind turbine-based DC microgrid using improved differential algorithm[J]. Power System Technology, 2015, 39(9): 2392–2397 [15] 李瑞, 李占凯, 张福民, 等. 基于共识算法的直流微网群分布式优化调度策略[J]. 南方电网技术, 2022, 16(1): 49–57 LI Rui, LI Zhankai, ZHANG Fumin, et al. Distributed optimal scheduling strategy of DC microgrid cluster based on consensus algorithm[J]. Southern Power System Technology, 2022, 16(1): 49–57 [16] 茅靖峰, 武剑, 张珍梦, 等. 基于AFPSO的孤岛型直流微网多目标优化研究[J]. 太阳能学报, 2021, 42(6): 63–71 MAO Jingfeng, WU Jian, ZHANG Zhenmeng, et al. Multi-objective optimization of island-type DC microgrid based on AFPSO[J]. Acta Energiae Solaris Sinica, 2021, 42(6): 63–71 [17] 程乐峰, 余涛, 张孝顺, 等. 机器学习在能源与电力系统领域的应用和展望[J]. 电力系统自动化, 2019, 43(1): 15–31 CHENG Lefeng, YU Tao, ZHANG Xiaoshun, et al. Machine learning for energy and electric power systems: state of the art and prospects[J]. Automation of Electric Power Systems, 2019, 43(1): 15–31 [18] 冯昌森, 张瑜, 文福拴, 等. 基于深度期望Q网络算法的微电网能量管理策略[J]. 电力系统自动化, 2022, 46(3): 14–22 FENG Changsen, ZHANG Yu, WEN Fushuan, et al. Energy management strategy for microgrid based on deep expected Q network algorithm[J]. Automation of Electric Power Systems, 2022, 46(3): 14–22 [19] 刘俊峰, 陈剑龙, 王晓生, 等. 基于深度强化学习的微能源网能量管理与优化策略研究[J]. 电网技术, 2020, 44(10): 3794–3803 LIU Junfeng, CHEN Jianlong, WANG Xiaosheng, et al. Energy management and optimization of multi-energy grid based on deep reinforcement learning[J]. Power System Technology, 2020, 44(10): 3794–3803 [20] 高振海, 闫相同, 高菲, 等. 仿驾驶员DDPG汽车纵向自动驾驶决策方法[J]. 汽车工程, 2021, 43(12): 1737–1744 GAO Zhenhai, YAN Xiangtong, GAO Fei, et al. A driver-like decision-making method for longitudinal autonomous driving based on DDPG[J]. Automotive Engineering, 2021, 43(12): 1737–1744 [21] 余宏晖, 林声宏, 朱建全, 等. 基于深度强化学习的微电网在线优化[J/OL]. 电测与仪表: 1–7[2022-10-04]. http://kns.cnki.net/kcms/detail/23.1202.TH.20211021.1651.007.html. YU Honghui, LIN Shenghong, ZHU Jiangquan et al. On-line optimization of micro grid based on deep reinforcement learning[J/OL]. Electrical Measurement & Instrumentation: 1–7[2022-10-04]. http://kns.cnki.net/kcms/detail/23.1202.TH.20211021.1651.007.html. [22] 刘蓉晖, 李阳, 杨秀, 等. 考虑需求响应的社区综合能源系统两阶段优化调度[J]. 太阳能学报, 2021, 42(9): 46–54 LIU Ronghui, LI Yang, YANG Xiu, et al. Two-stage optimal scheduling of community integrated energy system considering demand response[J]. Acta Energiae Solaris Sinica, 2021, 42(9): 46–54
|