中国电力 ›› 2023, Vol. 56 ›› Issue (12): 87-99.DOI: 10.11930/j.issn.1004-9649.202304051
收稿日期:
2023-04-13
接受日期:
2023-10-18
出版日期:
2023-12-28
发布日期:
2023-12-28
作者简介:
林林馨妍(1999—),女,硕士研究生,从事分布式发电与微网技术研究,E-mail: llxy@hhu.edu.cn基金资助:
Linxinyan LIN(), Junpeng ZHU(
), Yue YUAN(
)
Received:
2023-04-13
Accepted:
2023-10-18
Online:
2023-12-28
Published:
2023-12-28
Supported by:
摘要:
为了提高多微电网系统应对极端场景的能力,提出一种体系架构下多微电网分布式韧性增强策略。首先,基于体系(system of systems,SoS)架构对多微电网系统的能量互济过程进行建模,并采用分布式优化算法进行求解,保障了用户信息的私密性。其次,将经济性最优与满足频率稳定性共同作为目标,优化求解系统最小负荷切除问题,在追求系统整体运行效果的同时,更具针对性地满足子微电网的内部需求。最后,基于动态乘子更新策略的同步型交替方向乘子法解决分布式算法参数选择的难题,提升算法的收敛性和实用性。算例分析验证了所提模型与算法的有效性。
林林馨妍, 朱俊澎, 袁越. 体系架构下的多微电网分布式韧性增强策略[J]. 中国电力, 2023, 56(12): 87-99.
Linxinyan LIN, Junpeng ZHU, Yue YUAN. A Distributed Resilience Enhancement Strategy for Multi-microgrids Based on System of Systems Architecture[J]. Electric Power, 2023, 56(12): 87-99.
类型 | 参数 | m1 | m2 | m3 | ||||
柴油发电机 | 功率区间/kW | 0~50 | 0~60 | 0~15 | ||||
爬坡功率/kW | 15 | 20 | 15 | |||||
成本系数/(元·(kW·h)–1) | 1.5 | 1.4 | 1.4 | |||||
储能 | 充放电功率区间/kW | 0~30 | 0~30 | 0~30 | ||||
成本系数/(元·(kW·h)–1) | 0.4 | 0.3 | 0.3 | |||||
初始SOC/(kW·h) | 180 | 180 | 180 | |||||
负荷 | 负荷转移成本系数/(元·(kW·h)–1) | 4 | 4 | 4 | ||||
切负荷成本系数/(元·(kW·h)–1) | 30 | 30 | 30 |
表 1 多微电网系统运行费用与功率特性
Table 1 Operating cost and power characteristics of multi-microgrid system
类型 | 参数 | m1 | m2 | m3 | ||||
柴油发电机 | 功率区间/kW | 0~50 | 0~60 | 0~15 | ||||
爬坡功率/kW | 15 | 20 | 15 | |||||
成本系数/(元·(kW·h)–1) | 1.5 | 1.4 | 1.4 | |||||
储能 | 充放电功率区间/kW | 0~30 | 0~30 | 0~30 | ||||
成本系数/(元·(kW·h)–1) | 0.4 | 0.3 | 0.3 | |||||
初始SOC/(kW·h) | 180 | 180 | 180 | |||||
负荷 | 负荷转移成本系数/(元·(kW·h)–1) | 4 | 4 | 4 | ||||
切负荷成本系数/(元·(kW·h)–1) | 30 | 30 | 30 |
项目 | m1 | m2 | m3 | |||||
独立运行 | 韧性指标/(kW·h) | 1348.30 | 2201.60 | 518.10 | ||||
总成本/元 | 33893.41 | 77694.10 | 13158.60 | |||||
网络化微网 | 韧性指标/(kW·h) | 1947.80 | 2842.70 | 903.50 | ||||
韧性涌现提升率/% | 36.87 | 39.43 | 27.63 | |||||
总成本/元 | 14663.80 | 38578.10 | 2587.60 | |||||
本文方法 | 韧性指标/(kW·h) | 2119.40 | 3479.20 | 967.40 | ||||
韧性涌现提升率/% | 30.87 | 51.14 | 17.99 | |||||
总成本/元 | 14714.60 | 40731.50 | 2673.30 |
表 2 韧性涌现提升率和总成本
Table 2 Resilience emergent lift rate and total cost
项目 | m1 | m2 | m3 | |||||
独立运行 | 韧性指标/(kW·h) | 1348.30 | 2201.60 | 518.10 | ||||
总成本/元 | 33893.41 | 77694.10 | 13158.60 | |||||
网络化微网 | 韧性指标/(kW·h) | 1947.80 | 2842.70 | 903.50 | ||||
韧性涌现提升率/% | 36.87 | 39.43 | 27.63 | |||||
总成本/元 | 14663.80 | 38578.10 | 2587.60 | |||||
本文方法 | 韧性指标/(kW·h) | 2119.40 | 3479.20 | 967.40 | ||||
韧性涌现提升率/% | 30.87 | 51.14 | 17.99 | |||||
总成本/元 | 14714.60 | 40731.50 | 2673.30 |
类型 | 求解时间/s | 总韧性指标/(kW·h) | 总成本/元 | |||
分布式优化 | 12.18 | 6566.15 | 58119.53 | |||
集中式优化 | 2.85 | 6569.72 | 58027.66 |
表 3 分布式优化和集中式优化结果对比
Table 3 Comparison of distributed optimization and centralized optimization
类型 | 求解时间/s | 总韧性指标/(kW·h) | 总成本/元 | |||
分布式优化 | 12.18 | 6566.15 | 58119.53 | |||
集中式优化 | 2.85 | 6569.72 | 58027.66 |
1 |
阮前途, 谢伟, 许寅, 等. 韧性电网的概念与关键特征[J]. 中国电机工程学报, 2020, 40 (21): 6773- 6784.
DOI |
RUAN Qiantu, XIE Wei, XU Yin, et al. Concept and key features of resilient power grids[J]. Proceedings of the CSEE, 2020, 40 (21): 6773- 6784.
DOI |
|
2 |
张儒峰, 李雪, 姜涛, 等. 城市综合能源系统韧性评估与提升综述[J]. 全球能源互联网, 2021, 4 (2): 122- 132.
DOI |
ZHANG Rufeng, LI Xue, JIANG Tao, et al. Review on resilience assessment and rnhancement of urban integrated energy system[J]. Journal of Global Energy Interconnection, 2021, 4 (2): 122- 132.
DOI |
|
3 |
别朝红, 林雁翎, 邱爱慈. 弹性电网及其恢复力的基本概念与研究展望[J]. 电力系统自动化, 2015, 39 (22): 1- 9.
DOI |
BIE Zhaohong, LIN Yanling, QIU Aici. Concept and research prospects of power system resilience[J]. Automation of Electric Power Systems, 2015, 39 (22): 1- 9.
DOI |
|
4 | 梁海平, 石皓岩, 王岩, 等. 基于提升韧性的输电网灾后应急维修策略优化[J]. 中国电力, 2022, 55 (3): 142- 151. |
LIANG Haiping, SHI Haoyan, WANG Yan, et al. Resilience-improving based optimization of post-disaster emergency maintenance strategy for transmission networks[J]. Electric Power, 2022, 55 (3): 142- 151. | |
5 | 孙佳航, 王小华, 黄景光, 等. 基于MPC-VSG的孤岛微电网频率和电压动态稳定控制策略[J]. 中国电力, 2023, 56 (6): 51- 60, 81. |
SUN Jiahang, WANG Xiaohua, HUANG Jingguang, et al. MPC-VSG based control strategy for dynamic stability of frequency and voltage in islanded microgrid[J]. Electric Power, 2023, 56 (6): 51- 60, 81. | |
6 | 傅守强, 陈翔宇, 张立斌, 等. 面向韧性提升的交直流混合配电网协同恢复方法[J]. 中国电力, 2023, 56 (7): 95- 106. |
FU Shouqiang, CHEN Xiangyu, ZHANG Libin, et al. Evaluation of typhoon resilience of distribution network considering grid reconstruction and disaster recovery[J]. Electric Power, 2023, 56 (7): 95- 106. | |
7 | FRANCIS R, BEKERA B. A metric and frameworks for resilience analysis of engineered and infrastructure systems[J]. Reliability Engineering & System Safety, 2014, 121, 90- 103. |
8 |
FARZIN H, FOTUHI-FIRUZABAD M, MOEINIAGHTAIE M. Enhancing power system resilience through hierarchical outage management in multi-microgrids[J]. IEEE Transactions on Smart Grid, 2016, 7 (6): 2869- 2879.
DOI |
9 |
LI B, MA Z, HIDALGO-GONZALEZ P, et al. Modeling the impact of EVs in the Chinese power system: Pathways for implementing emissions reduction commitments in the power and transportation sectors[J]. Energy Policy, 2021, 149, 111962.
DOI |
10 |
ZHAO B, WANG X, LIN D, et al. Energy management of multiple microgrids based on a system of systems architecture[J]. IEEE Transactions on Power Systems, 2018, 33 (6): 6410- 6421.
DOI |
11 | WANG J, ZHONG H, TANG W, et al. Optimal bidding strategy for microgrids in joint energy and ancillary service markets considering flexible ramping products[J]. Applied Energy, 2017, 205, 294- 303. |
12 |
SCHNEIDER K P, TUFFNER F K, ELIZONDO M A, et al. Evaluating the feasibility to use microgrids as a resiliency resource[J]. IEEE Transactions on Smart Grid, 2017, 8 (2): 1- 1.
DOI |
13 |
XU Y, LIU C, SCHNEIDER K P, et al. Microgrids for service restoration to critical load in a resilient distribution system[J]. IEEE Transactions on Smart Grid, 2018, 9 (1): 426- 437.
DOI |
14 |
姚维强, 周健, 时珊珊, 等. 基于合作博弈的多微电网系统灾后恢复决策模型[J]. 电工电能新技术, 2021, 40 (3): 32- 38.
DOI |
YAO Weiqiang, ZHOU Jian, SHI Shanshan, et al. Decision-making model of restoration of multi-microgrid system after disaster based on cooperative game[J]. Advanced Technology of Electrical Engineering and Energy, 2021, 40 (3): 32- 38.
DOI |
|
15 |
ZHOU Q, TIAN Z, SHAHIDEHPOUR M, et al. Optimal consensus-based distributed control strategy for coordinated operation of networked microgrids[J]. IEEE Transactions on Power Systems, 2020, 35 (3): 2452- 2462.
DOI |
16 |
MA W J, WANG J, GUPTA V, et al. Distributed energy management for networked microgrids using online ADMM with regret[J]. IEEE Transactions on Smart Grid, 2018, 9 (2): 847- 856.
DOI |
17 |
LI Z, SHAHIDEHPOUR M, AMINIFAR F, et al. Networked microgrids for enhancing the power system resilience[J]. Proceedings of the IEEE, 2017, 105 (7): 1- 22.
DOI |
18 | SAMUEL M. K, FUKUHARA A, SASAKI Y, et al. A novel energy management approach to networked microgrids for disaster resilience[C]//Proceedings of the 2021 International Symposium on Devices, Circuits and Systems (ISDCS). Higashi-Hiroshima, Japan, 2021: 1–5. |
19 | HUSSAIN A, BUI V H, KIM H M. A resilient and privacy-preserving energy management strategy for networked microgrids[J]. IEEE Transactions on Smart Grid, 2016, 9 (3): 2127- 2139. |
20 | 张后谊, 赵波, 汪湘晋, 等. 体系架构下的多微电网系统能量管理与贡献度评估[J]. 中国电机工程学报, 2020, 40 (13): 4175- 4187. |
ZHANG Houyi, ZHAO Bo, WANG Xiangjin, et al. Energy management and contribution evaluation of multi-microgrid system under system of systems architecture[J]. Proceedings of the CSEE, 2020, 40 (13): 4175- 4187. | |
21 |
胡晓峰, 张斌. 体系复杂性与体系工程[J]. 中国电子科学研究院学报, 2011, 6 (5): 446- 450.
DOI |
Hu Xiaofeng, Zhang Bin. SoS complexity and SoS engineering[J]. Journal of CAEIT, 2011, 6 (5): 446- 450.
DOI |
|
22 |
赵波, 张后谊, 陈民铀, 等. 体系动态架构下的多微电网系统能量管理模型与动态链接行为分析方法[J]. 中国电机工程学报, 2020, 40 (20): 6468- 6482.
DOI |
ZHAO Bo, ZHANG Houyi, CHEN Minyou, et al. Energy management model and dynamic link behavior analysis method for multi-microgrid systems under dynamic system of systems architecture[J]. Proceedings of the CSEE, 2020, 40 (20): 6468- 6482.
DOI |
|
23 |
杨炜晨, 苗世洪, 张世旭, 等. 交直流混合微电网群分布式自治经济控制策略[J]. 中国电机工程学报, 2021, 41 (3): 857- 868.
DOI |
YANG Weichen, MIAO Shihong, ZHANG Shixu, et al. Distributed autonomous economic control strategy for AC/DC hybrid microgrid cluster[J]. Proceedings of the CSEE, 2021, 41 (3): 857- 868.
DOI |
|
24 |
张步云, 王晋宁, 梁定康, 等. 采用一致性算法的自治微电网群分布式储能优化控制策略[J]. 电网技术, 2020, 44 (5): 1705- 1713.
DOI |
ZHANG Buyun, WANG Jinning, LIANG Dingkang, et al. Optimization control strategy of distributed energy storage in autonomous microgrid cluster on consensus algorithm[J]. Power System Technology, 2020, 44 (5): 1705- 1713.
DOI |
|
25 | 陈志杰, 陈民铀, 赵波, 等. SoS架构下的多微电网极端场景韧性增强策略[J]. 电力系统自动化, 2021, 45 (22): 29- 37. |
CHEN Zhijie, CHEN Minyou, ZHAO Bo, et al. Resilience enhancement strategies for extreme scenarios of multi-microgrid based on system of systems architecture[J]. Automation of Electric Power Systems, 2021, 45 (22): 29- 37. | |
26 |
吴成辉, 林声宏, 夏成军, 等. 基于模型预测控制的微电网群分布式优化调度[J]. 电网技术, 2020, 44 (2): 530- 538.
DOI |
WU Chenghui, LIN Shenghong, XIA Chengjun, et al. Distributed optimal dispatch of microgrid cluster based on model predictive control[J]. Power System Technology, 2020, 44 (2): 530- 538.
DOI |
|
27 |
WEN Y, LI W, HUANG G, et al. Frequency dynamics constrained unit commitment with battery energy storage[J]. IEEE Transactions on Power Systems, 2016, 31 (6): 5115- 5125.
DOI |
28 | 郑子萱, 倪扶瑶, 汪颖, 等. 基于模型预测控制混合储能系统的直流微电网韧性提升策略[J]. 电力自动化设备, 2021, 41 (5): 152- 159. |
ZHENG Zixuan, NI Fuyao, WANG Ying, et al. Operation resilience enhancing strategy of DC microgrid based on model predictive controlled hybrid energy storage system[J]. Electric Power Automation Equipment, 2021, 41 (5): 152- 159. | |
29 | 吴文仙, 韩冬, 孙伟卿, 等. 考虑韧性增强策略的配电网负荷恢复优化[J]. 电力科学与工程, 2019, 35 (4): 17- 24. |
WU Wenxian, HAN Dong, SUN Weiqing, et al. Load restoration optimization of distribution systems considering resilience enhancement strategy[J]. Electric Power Science and Engineering, 2019, 35 (4): 17- 24. | |
30 | 陈志杰. 体系架构下多微电网系统韧性增强策略与能量管理方法研究[D]. 重庆: 重庆大学, 2022. |
CHEN Zhijie. Study on resilience enhancement strategy and energy management method of multi-microgrids based on system of systems architecture[D]. Chongqing: Chongqing University, 2022. | |
31 | 赵优. 考虑韧性提升的有源配电网故障恢复方法研究[D]. 秦皇岛: 燕山大学, 2020. |
ZHAO You. Research on active distribution network fault restoration method considering resilience improvement[D]. Qinhuangdao: Yanshan University, 2020. | |
32 |
INOUE T, TANIGUCHI H, IKEGUCHI Y, et al. Estimation of power system inertia constant and capacity of spinning-reserve support generators using measured frequency transients[J]. IEEE Transactions on Power Systems, 1997, 12 (1): 136- 143.
DOI |
33 |
HE Y, YAN M, SHAHIDEHPOUR M, et al. Decentralized optimization of multi-area electricity-natural gas flows based on cone reformulation[J]. IEEE Transactions on Power Systems, 2018, 33 (4): 4531- 4542.
DOI |
34 |
WEN Y, QU X, LI W, et al. Synergistic operation of electricity and natural gas networks via ADMM[J]. IEEE Transactions on Smart Grid, 2018, 9 (5): 4555- 4565.
DOI |
[1] | 刘雨姗, 陈俊儒, 常喜强, 刘牧阳. 构网型储能变流器并网性能的多层级评价指标体系及应用[J]. 中国电力, 2025, 58(3): 193-203. |
[2] | 赖业宁, 孙仲卿, 陆志平, 刘沁. 考虑储能资源聚合参与的电网优化运行与韧性提升策略[J]. 中国电力, 2025, 58(2): 57-65. |
[3] | 齐国民, 李天野, 于洪, 卢博伦, 马宝中, 张文欣, 吴恩同, 肖先瑶. 基于MPC的户用光-储系统容量配置及运行优化模型[J]. 中国电力, 2025, 58(1): 185-195. |
[4] | 祝士焱, 许寅, 和敬涵, 王颖. 基于多微电网投影的配电系统协调恢复方法[J]. 中国电力, 2024, 57(9): 224-230. |
[5] | 杨珂, 王栋, 李达, 张王俊, 向尕, 李军. 虚拟电厂网络安全风险评估指标体系构建及量化计算[J]. 中国电力, 2024, 57(8): 130-137. |
[6] | 乔俊峰, 周爱华, 彭林, 王一清, 沈晓峰, 潘森, 杨佩, 黄晨宏. 基于多源数据深度融合的配电网运行评价方法[J]. 中国电力, 2024, 57(6): 193-203. |
[7] | 和彦淼, 黄印, 颜湘莲, 李志兵. SF6混合气体和环保替代气体设备标准化研究[J]. 中国电力, 2024, 57(3): 95-102. |
[8] | 田鑫, 王林钰, 冀星沛, 韩新阳. 基于现代化基础设施体系政策要求的电网规模预测及优化需求[J]. 中国电力, 2024, 57(2): 1-8. |
[9] | 张冲标, 钱辰雯, 俞红燕, 彭燕玲, 陈金威. 基于ADMM的多场景县域多微电网交互运行策略[J]. 中国电力, 2024, 57(2): 9-18. |
[10] | 康俊杰, 赵春阳, 周国鹏, 赵良. 基于熵权-德尔菲法的源网荷储多能互补项目布局评估方法[J]. 中国电力, 2024, 57(12): 120-131. |
[11] | 于宗超, 文明, 李湘华, 谢欣涛, 杨洪明. 融合群体智慧的分布式智能电网高效发展管理策略[J]. 中国电力, 2024, 57(10): 57-68. |
[12] | 傅守强, 陈翔宇, 张立斌, 秦超, 曾永康. 面向韧性提升的交直流混合配电网协同恢复方法[J]. 中国电力, 2023, 56(7): 95-106. |
[13] | 王林钰, 张富强, 龚一莼, 夏鹏, 史文博, 潘杭萍. 中国跨能源品种可调节资源潜力与开发利用情景[J]. 中国电力, 2023, 56(6): 1-10. |
[14] | 王金丽, 李丰胜, 解芳, 张姚, 田野. “双碳”战略背景下新型配电系统技术标准体系[J]. 中国电力, 2023, 56(5): 22-31. |
[15] | 吴岩, 王光政. 基于CiteSpace的配电网韧性评估与提升研究综述与展望[J]. 中国电力, 2023, 56(12): 100-112, 137. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||