中国电力 ›› 2023, Vol. 56 ›› Issue (2): 133-142.DOI: 10.11930/j.issn.1004-9649.202209016

• 新能源 • 上一篇    下一篇

考虑光储型电热协同系统灵活性的多代理削峰填谷策略

曾爽1, 梁安琪1, 王立永1, 李香龙1, 马麟1, 王喆2, 王林钰2, 刘澜2, 赵伟2   

  1. 1. 国网北京市电力公司电力科学研究院,北京 100075;
    2. 国网(苏州)城市能源研究院有限责任公司,江苏 苏州 215004
  • 收稿日期:2022-09-06 修回日期:2022-12-26 发布日期:2023-02-23
  • 作者简介:曾爽(1985—),男,硕士,高级工程师,从事综合能源服务业务研究,E-mail:zengshuangbj@163.com;梁安琪(1992—),女,通信作者,硕士,工程师,从事多能互补、能效提升技术研究,E-mail:laq0705@163.com
  • 基金资助:
    国家电网有限公司科技项目(面向典型区域清洁供能的电热协同跨网互济关键技术研究及示范,5400-202111575A-0-5-SF)。

Multi-agent Peak Shaving and Valley Filling Strategy Considering the Flexibility of Electric-Thermal System with Optical Storage

ZENG Shuang1, LIANG Anqi1, WANG Liyong1, LI Xianglong1, MA Lin1, WANG Zhe2, WANG Linyu2, LIU Lan2, ZHAO Wei2   

  1. 1. State Grid Beijing Electric Power Research Institute, Beijing 100075, China;
    2. State Grid (Suzhou) City and Energy Research Institute Co., Ltd., Suzhou 215004, China
  • Received:2022-09-06 Revised:2022-12-26 Published:2023-02-23
  • Supported by:
    This work is supported by Science and Technology Project of SGCC (Research and Demonstration of Key Technology of Electricity and Heat Cooperative Grid Mutual Support for Clean Energy Supply in Typical Regions, No.5400-202111575A-0-5-SF).

摘要: 为解决光储型电热协同系统(electric-thermal system, ETS)协作参与电网削峰填谷问题,并减小负荷预测误差和新能源波动对调节效果的影响,提出一种多代理削峰填谷策略。该策略依托由配网代理、区域代理、ETS/光伏发电(PV)代理和执行单元构成的多代理系统实施,包含集中式能量优化和分布式能量管理环节。在集中式能量优化过程中,配网代理可通过求解以自身运行成本最小为优化目标的模型预测控制(model predictive control,MPC)优化模型,为区域代理及其内部的光伏系统提供日内有功功率上限计划。分布式能量管理过程中,区域代理和ETS/PV代理基于多智能体一致性算法获取供暖设备的有功功率修正值,从而减小实际区域代理有功功率与其计划值间的偏差。仿真结果表明:该策略可使系统协同参与削峰填谷且结果更精确。

关键词: 电热协同系统, 削峰填谷, 多代理系统, 能量管理

Abstract: This paper proposes a multi-agent peak shaving and valley filling strategy to solve the problem of collaborative participation of an electric-thermal system (ETS) with optical storage in peak shaving and valley filling of power grids and reduce the impact of load prediction errors and volatility of new energy on the regulation effect. The strategy is implemented based on a multi-agent system consisting of a distribution network agent, regional agents, ETS/photovoltaic (PV) agents, and execution units, and it contains centralized energy optimization and distributed energy management links. In the centralized energy optimization process, the distribution network agent can provide an intra-day active power cap scheme for the regional agents and their internal photovoltaic systems by solving a model predictive control (MPC) optimization model with the optimization objective of minimizing its own operating costs. In the distributed energy management process, the regional agents and ETS/PV agents obtain correction values of the active power for the heating equipment based on a multi-agent consistency algorithm so that the deviation between the actual active power of the regional agents and its planned value can be reduced. The simulation results show that the proposed method allows the system to collaborate in peak shaving and valley filling with more accurate results.

Key words: electric-thermal system, peak shaving and valley filling, multi-agent system, energy management