[1] 金顺平. 基于博弈论的区域电热系统多能流协同优化[D]. 北京: 华北电力大学, 2021. JIN Shunping. Coordination optimization of multi-energy flow in regional electricity and heating system based on game theory[D]. Beijing: North China Electric Power University, 2021. [2] 赖业宁, 张政, 薛峰, 等. 电热协同互补提升电网灵活性的评估及仿真[J]. 浙江电力, 2022, 41(3): 34–41 LAI Yening, ZHANG Zheng, XUE Feng, et al. Evaluation and simulation of grid flexibility improvement by electric-thermal complement[J]. Zhejiang Electric Power, 2022, 41(3): 34–41 [3] 张超, 冯忠楠, 邓少平, 等. 考虑电热混合储能的多能互补协同削峰填谷策略[J]. 电工技术学报, 2021, 36(增刊1): 191–199 ZHANG Chao, FENG Zhongnan, DENG Shaoping, et al. Multi-energy complementary collaborative peak-load shifting strategy based on electro-thermal hybrid energy storage system[J]. Transactions of China Electrotechnical Society, 2021, 36(S1): 191–199 [4] 戴世刚, 黄文焘, 邰能灵, 等. 基于蓄热热泵群灵活控制的电热微网联络线功率平滑策略[J]. 电网技术, 2019, 43(5): 1726–1734 DAI Shigang, HUANG Wentao, TAI Nengling, et al. A fluctuation suppression strategy of tie-line power based on flexible control of heat pumps with water tanks in combined heat and power microgrid[J]. Power System Technology, 2019, 43(5): 1726–1734 [5] 李伟阳. “电热协同网”是城市节能降碳的现实必然选择[N]. 中国能源报, 2021-11-08(25). [6] 张胜杰, 张金梦. “电热协同 跨网互济”是提升城市整体能效的重要手段[N]. 中国能源报, 2021-07-05(27). [7] 王颖祺. 线性规划为制造加工企业制定科学生产决策研究[J]. 黑龙江工业学院学报(综合版), 2018, 18(7): 76–78 WANG Yingqi. Making scientific production decision for manufacturing enterprises by linear programming[J]. Journal of Heilongjiang University of Technology (Comprehensive Edition), 2018, 18(7): 76–78 [8] 王呈仿. 基于精益生产的制造/再制造混合系统生产决策模型研究[D]. 武汉: 武汉理工大学, 2010. WANG Chengfang. Research on production decision-making model in manufacturing/remanufacturing hybrid system based on lean production[D]. Wuhan: Wuhan University of Technology, 2010. [9] 楚明娟. 基于蒙特卡洛序贯仿真的生产模拟算法与应用研究[D]. 合肥: 合肥工业大学, 2017. CHU Mingjuan. Research on production simulation algorithm and application based on Monte Carlo sequential simulation[D]. Hefei: Hefei University of Technology, 2017. [10] DU P L, CHEN Z, GONG X M. Load response potential evaluation for distribution networks: a hybrid decision-making model with intuitionistic normal cloud and unknown weight information[J]. Energy, 2020, 192: 116673. [11] MENG D, SHAO C, ZHU L. Ethylene cracking furnace TOPSIS energy efficiency evaluation method based on dynamic energy efficiency baselines[J]. Energy, 2018, 156: 620–634. [12] 谭清坤. 园区多能互补调度优化及效益评价模型研究[D]. 北京: 华北电力大学, 2019. TAN Qingkun. Research on multi-energy complementary scheduling optimization and benefit evaluation model in park[D]. Beijing: North China Electric Power University, 2019. [13] 陈柏森, 廖清芬, 刘涤尘, 等. 区域综合能源系统的综合评估指标与方法[J]. 电力系统自动化, 2018, 42(4): 174–182 CHEN Baisen, LIAO Qingfen, LIU Dichen, et al. Comprehensive evaluation indices and methods forregional integrated energy system[J]. Automation of Electric Power Systems, 2018, 42(4): 174–182 [14] 严嘉伦, 林俊光, 楼可炜, 等. 基于AHP-变异系数法的楼宇型综合能源系统评价体系[J]. 热力发电, 2019, 48(12): 25–30 YAN Jialun, LIN Junguang, LOU Kewei, et al. Evaluation system for building integrated energy system based on AHP-CV method[J]. Thermal Power Generation, 2019, 48(12): 25–30 [15] 李庆胜, 刘思峰. 灰色犹豫模糊集及其灰关联TOPSIS决策方法[J]. 江苏科技大学学报(自然科学版), 2015, 29(6): 597–601, 606 LI Qingsheng, LIU Sifeng. Grey hesitant fuzzy sets and its decision making based on grey relation and TOPSIS[J]. Journal of Jiangsu University of Science and Technology (Natural Science Edition), 2015, 29(6): 597–601, 606 [16] 郭鹏, 施品贵. 项目风险模糊灰色综合评价方法研究[J]. 西安理工大学学报, 2005, 21(1): 106–109 GUO Peng, SHI Pingui. Research on fuzzy-grey comprehensive evaluation method of project risk[J]. Journal of Xi’an University of Technology, 2005, 21(1): 106–109 [17] 刘维学. 系统评价指标体系与灰色模糊评价模型构建[J]. 计算机技术与发展, 2013, 23(10): 193–196, 200 LIU Weixue. Construction of system evaluation index system and grey fuzzy evaluation model[J]. Computer Technology and Development, 2013, 23(10): 193–196, 200 [18] 谢庆华. 基于AHP-灰色模糊的后发展区域产业集群成熟度评价[J]. 西北工业大学学报(社会科学版), 2016, 36(4): 57–63 XIE Qinghua. Maturity evaluation of industrial clusters in post-development regions based on AHP-grey fuzzy theory[J]. Journal of Northwestern Polytechnical University (Social Sciences), 2016, 36(4): 57–63 [19] 任洪波, 李通, 李琦芬, 等. 考虑可靠性和经济性的综合能源系统优化配置方法[J]. 科学技术与工程, 2021, 21(23): 9871–9877 REN Hongbo, LI Tong, LI Qifen, et al. Economic optimal configuration method of integrated energy system considering reliability[J]. Science Technology and Engineering, 2021, 21(23): 9871–9877 [20] 刘洪, 李吉峰, 葛少云, 等. 多元储能系统运行策略对综合能源微网可靠性影响评估[J]. 电力系统自动化, 2019, 43(10): 36–43 LIU Hong, LI Jifeng, GE Shaoyun, et al. Impact evaluation of operation strategies of multiple energy storage systems on reliability of multi-energy microgrid[J]. Automation of Electric Power Systems, 2019, 43(10): 36–43 [21] 李潇瀛, 方鸽, 李昌均. 基于FCM-ARIMA的多阶段退化设备寿命预测研究[J]. 计算机仿真, 2021, 38(8): 33–36, 74 LI Xiaoying, FAGN Ge, LI Changjun. Research on life prediction of multi stage degradation equipment based on FCM-ARIMA[J]. Computer Simulation, 2021, 38(8): 33–36, 74 [22] 朱伟业, 罗毅, 胡博, 等. 考虑采暖建筑用户热负荷弹性与分时电价需求侧响应协同的电热联合系统优化调度[J]. 电力系统保护与控制, 2022, 50(9): 124–135 ZHU Weiye, LUO Yi, HU Bo, et al. Optimized combined heat and power dispatch considering the coordination of heat load elasticity and time-of-use demand response[J]. Power System Protection and Control, 2022, 50(9): 124–135 [23] 卢川, 黄婧杰, 孙志云, 等. 考虑非计划离网期用能需求的工商业园区优化运行[J]. 南方电网技术, 2022, 16(3): 67–75 LU Chuan, HUANG Jingjie, SUN Zhiyun, et al. Optimal operation of industrial and commercial park considering load demand during unplanned off-grid[J]. Southern Power System Technology, 2022, 16(3): 67–75 [24] 戴立新, 戴宇昂. 含热泵的热电联产型微电网的最优容量配置[J]. 价值工程, 2019, 38(3): 178–181 DAI Lixin, DAI Yuang. Optimal capacity configuration of cogeneration microgrid with heat pump[J]. Value Engineering, 2019, 38(3): 178–181 [25] 申航宇, 樊小朝, 史瑞静, 等. 独立光氢燃料电池热电联供系统容量配置优化[J]. 电气传动, 2022, 52(22): 44–50, 65 SHEN Hangyu, FAN Xiaochao, SHI Ruijing, et al. Capacity configuration optimization of cogeneration system for independent photohydrogen fuel cell[J]. Electric Drive, 2022, 52(22): 44–50, 65 [26] 朱志莹, 郭杰, 于国强, 等. 风光接入下储能系统双层优化模型[J]. 太阳能学报, 2022, 43(10): 443–451 ZHU Zhiying, GUO Jie, YU Guoqiang, et al. Bi-layer optimization model for energy storage systems under wind and PV access[J]. Acta Energiae Solaris Sinica, 2022, 43(10): 443–451 [27] 杨永标, 于建成, 李奕杰, 等. 含光伏和蓄能的冷热电联供系统调峰调蓄优化调度[J]. 电力系统自动化, 2017, 41(6): 6–12, 29 YANG Yongbiao, YU Jiancheng, LI Yijie, et al. Optimal load leveling dispatch of CCHP incorporating photovoltaic and storage[J]. Automation of Electric Power Systems, 2017, 41(6): 6–12, 29 [28] 曹钰, 房磊. “双碳”背景下热电机组-储热联合运行消纳弃风策略[J]. 中国电力, 2022, 55(10): 142–149, 160 CAO Yu, FANG Lei. The strategy of combined operation of thermoelectric unit and thermal storage for eliminating wind under the background of “double carbon”[J]. Electric Power, 2022, 55(10): 142–149, 160 [29] 张治, 魏振华, 邓子琦. 基于热需求响应的综合能源系统可靠供能能力评估[J]. 科学技术与工程, 2022, 22(11): 4350–4358 ZHANG Zhi, WEI Zhenhua, DENG Ziqi. Evaluation of the reliable energy supply interval of the integrated energy system with the participation of heat demand response[J]. Science Technology and Engineering, 2022, 22(11): 4350–4358 [30] 李华, 李兴斯. 带有叉熵约束的最小叉熵优化问题的求解[J]. 兰州理工大学学报, 2006, 32(1): 148–151 LI Hua, LI Xingsi. Solution of minimum cross-entropy optimization problems with cross-entropy constraints[J]. Journal of Lanzhou University of Technology, 2006, 32(1): 148–151 [31] 丰雪, 李兴斯, 张阚. 最小叉熵优化模型在保险定价中的应用研究[J]. 运筹与管理, 2008, 17(6): 107–111, 126 FENG Xue, LI Xingsi, ZHANG Kan. Research on minimum cross-entropy optimization model in insurance pricing[J]. Operations Research and Management Science, 2008, 17(6): 107–111, 126 [32] 何大义, 陈小玲, 许加强. 多属性群决策问题中基于最小叉熵的权重集成方法[J]. 控制与决策, 2017, 32(2): 378–384 HE Dayi, CHEN Xiaoling, XU Jiaqiang. Weight aggregation method based on principle of minimum cross-entropy in multiple attribute group decision-making[J]. Control and Decision, 2017, 32(2): 378–384
|