[1] 刘斌, 谈竹奎, 唐赛秋, 等. 基于数据预测启发式算法的光伏电池参数识别[J]. 电力系统保护与控制, 2021, 49(23): 72–79 LIU Bin, TAN Zhukui, TANG Saiqiu, et al. Photovoltaic cell parameter extraction using data prediction based on a meta-heuristic algorithm[J]. Power System Protection and Control, 2021, 49(23): 72–79 [2] 管飞, 卫思明, 付文启, 等. 光伏电源经新能源同步机并网的仿真研究[J]. 智慧电力, 2021, 49(7): 23–30 GUAN Fei, WEI Siming, FU Wenqi, et al. Simulation of photovoltaic power connected to grid by motor-generator pair[J]. Smart Power, 2021, 49(7): 23–30 [3] LIU H F, GAO Q, MA P C. Photovoltaic generation power prediction research based on high quality context ontology and gated recurrent neural network[J]. Sustainable Energy Technologies and Assessments, 2021, 45: 101191. [4] 刘倩, 胡强, 杨凌帆, 等. 基于时间序列的深度学习光伏发电模型研究[J]. 电力系统保护与控制, 2021, 49(19): 87–98 LIU Qian, HU Qiang, YANG Lingfan, et al. Deep learning photovoltaic power generation model based on time series[J]. Power System Protection and Control, 2021, 49(19): 87–98 [5] 解振学, 林帆, 王若谷, 等. 基于时序动态回归的超短期光伏发电功率预测方法[J]. 智慧电力, 2022, 50(7): 45–51 XIE Zhenxue, LIN Fan, WANG Ruogu, et al. Very short-term photovoltaic power forecasting method based on time series dynamic regression[J]. Smart Power, 2022, 50(7): 45–51 [6] MA H R, LIU Z, LI M, et al. A two-stage optimal scheduling method for active distribution networks considering uncertainty risk[J]. Energy Reports, 2021, 7: 4633–4641. [7] BERMUDEZ-GARCIA A, VOARINO P, RACCURT O. Environments, needs and opportunities for future space photovoltaic power generation: a review[J]. Applied Energy, 2021, 290: 116757. [8] MA H R, WANG B, GAO W Z, et al. Optimal scheduling of an regional integrated energy system with energy storage systems for service regulation[J]. Energies, 2018, 11(1): 195. [9] 苏向敬, 刘一航, 张知宇, 等. 计及源荷不确定影响的不平衡配电网两阶段优化[J]. 电力系统保护与控制, 2022, 50(23): 94–103 SU Xiangjing, LIU Yihang, ZHANG Zhiyu, et al. Two-stage optimization of unbalanced distribution networks considering impacts of DG and load uncertainties[J]. Power System Protection and Control, 2022, 50(23): 94–103 [10] WEI D Q, WANG B, LIN G, et al. Research on unstructured text data mining and fault classification based on RNN-LSTM with malfunction inspection report[J]. Energies, 2017, 10(3): 406. [11] 白斌, 韩明亮, 林江, 等. 含风电和光伏的可再生能源场景削减方法[J]. 电力系统保护与控制, 2021, 49(15): 141–149 BAI Bin, HAN Mingliang, LIN Jiang, et al. Scenario reduction method of renewable energy including wind power and photovoltaic[J]. Power System Protection and Control, 2021, 49(15): 141–149 [12] WANG B, FANG B W, WANG Y J, et al. Power system transient stability assessment based on big data and the core vector machine[J]. IEEE Transactions on Smart Grid, 2016, 7(5): 2561–2570. [13] 万天虎, 李华, 唐浩, 等. 基于多主站协调控制的光伏电站一次调频应用研究[J]. 智慧电力, 2021, 49(4): 37–43 WAN Tianhu, LI Hua, TANG Hao, et al. Application & research on primary frequency modulation of photovoltaic power station based on multi-master coordinated control[J]. Smart Power, 2021, 49(4): 37–43 [14] 陈伟, 李旭斌, 纪青春, 等. 一种基于关联集和可用度的光伏发电系统维护策略[J]. 电力系统保护与控制, 2022, 50(14): 94–104 CHEN Wei, LI Xubin, JI Qingchun, et al. A maintenance strategy for a photovoltaic power generation system based on an associative set and availability[J]. Power System Protection and Control, 2022, 50(14): 94–104 [15] 李秉晨, 于惠钧, 刘靖宇. 基于Kmeans和CEEMD-PE-LSTM的短期光伏发电功率预测[J]. 水电能源科学, 2021, 39(4): 204–208 LI Bingchen, YU Huijun, LIU Jingyu. Prediction of short-term photovoltaic power generation based on kmeans and CEEMD-PE-LSTM[J]. Water Resources and Power, 2021, 39(4): 204–208 [16] 黄雨薇, 彭道刚, 姚峻, 等. 基于SSA和K均值的TD-BP神经网络超短期光伏功率预测[J]. 太阳能学报, 2021, 42(4): 229–238 HUANG Yuwei, PENG Daogang, YAO Jun, et al. Ultra-short-term photovoltaic power forecast of td-bp neural network based on ssa and k-means[J]. Acta Energiae Solaris Sinica, 2021, 42(4): 229–238 [17] 张洁, 郝倩男. 基于烟花算法优化BP神经网络的光伏功率预测[J]. 计算机技术与发展, 2021, 31(10): 146–153 ZHANG Jie, HAO Qiannan. Forecast of photovoltaic power generation based on firework algorithm optimized BP neural network[J]. Computer Technology and Development, 2021, 31(10): 146–153 [18] 李丰君, 王磊, 赵健, 等. 基于天气融合和LSTM网络的分布式光伏短期功率预测方法[J]. 中国电力, 2022, 55(11): 149–154 LI Fengjun, WANG Lei, ZHAO Jian, et al. Research on distributed photovoltaic short-term power prediction method based on weather fusion and LSTM-net[J]. Electric Power, 2022, 55(11): 149–154 [19] 刘海涛, 叶筱怡, 吕干云, 等. 基于BAS-SVM的配电网电压暂降源识别[J]. 中国电力, 2022, 55(5): 128–133 LIU Haitao, YE Xiaoyi, LÜ Ganyun, et al. Identification of voltage sag source in distribution network based on BAS-SVM[J]. Electric Power, 2022, 55(5): 128–133 [20] 杨茂, 杨宇. 基于小波包与LSSVM的短期光伏输出功率预测研究[J]. 可再生能源, 2019, 37(11): 1595–1602 YANG Mao, YANG Yu. Short-term photovoltaic output power prediction based on wavelet packet and LSSVM[J]. Renewable Energy Resources, 2019, 37(11): 1595–1602 [21] 汪友明, 穆恒星, 徐国宁. 基于改进粒子群优化支持向量机的光伏电池输出功率预测[J]. 电气自动化, 2019, 41(3): 63–65, 91 WANG Youming, MU Hengxing, XU Guoning. Prediction of output power of photovoltaic cells based on the improved particle swarm optimization support vector machine[J]. Electrical Automation, 2019, 41(3): 63–65, 91 [22] 时珉, 许可, 王珏, 等. 基于灰色关联分析和GeoMAN模型的光伏发电功率短期预测[J]. 电工技术学报, 2021, 36(11): 2298–2305 SHI Min, XU Ke, WANG Jue, et al. Short-term photovoltaic power forecast based on grey relational analysis and GeoMAN model[J]. Transactions of China Electrotechnical Society, 2021, 36(11): 2298–2305 [23] 孟安波, 陈嘉铭, 黎湛联, 等. 基于相似日理论和CSO-WGPR的短期光伏发电功率预测[J]. 高电压技术, 2021, 47(4): 1176–1184 MENG Anbo, CHEN Jiaming, LI Zhanlian, et al. Short-term photovoltaic power generation prediction based on similar day theory and CSO-WGPR[J]. High Voltage Engineering, 2021, 47(4): 1176–1184 [24] 余向阳, 赵怡茗, 杨宁宁, 等. 基于VMD-SE-LSSVM和迭代误差修正的光伏发电功率预测[J]. 太阳能学报, 2020, 41(2): 310–318 YU Xiangyang, ZHAO Yiming, YANG Ningning, et al. Photovoltaic power generation forecasting based on vmd-se-lssvm and iterative error correction[J]. Acta Energiae Solaris Sinica, 2020, 41(2): 310–318 [25] 方权, 刘闯, 宋敏, 等. 模糊评价与PSO优化的LSSVM架空输电线路故障率预测[J]. 水电能源科学, 2021, 39(1): 171–175 FANG Quan, LIU Chuang, SONG Min, et al. Failure rate prediction of overhead transmission line based on fuzzy evaluation and PSO-optimized LSSVM[J]. Water Resources and Power, 2021, 39(1): 171–175 [26] 刘闯, 何沁鸿, 卢银均, 等. 输电线路PSOEM-LSSVM覆冰预测模型[J]. 电力科学与技术学报, 2020, 35(6): 131–137 LIU Chuang, HE Qinhong, LU Yinjun, et al. PSOEM-LSSVM forecasting model for the transmission lines icing[J]. Journal of Electric Power Science and Technology, 2020, 35(6): 131–137 [27] 张志浩, 熊文洁, 钟文, 等. 基于改进PSO-DE融合算法优化LSSVM的短期风功率预测[J]. 山东电力技术, 2022, 49(10): 9–15 ZHANG Zhihao, XIONG Wenjie, ZHONG Wen, et al. Short term wind power forecast based on LSSVM optimized by improved PSO-DE fusion algorithm[J]. Shandong Electric Power, 2022, 49(10): 9–15 [28] 刘聪, 费炜, 胡胜. 狼群算法的研究与应用综述[J]. 科学技术与工程, 2020, 20(9): 3378–3386 LIU Cong, FEI Wei, HU Sheng. Review on research and application of wolf pack algorithm[J]. Science Technology and Engineering, 2020, 20(9): 3378–3386 [29] 吴虎胜, 张凤鸣, 吴庐山. 一种新的群体智能算法: 狼群算法[J]. 系统工程与电子技术, 2013, 35(11): 2430–2438 WU Husheng, ZHANG Fengming, WU Lushan. New swarm intelligence algorithm-wolf pack algorithm[J]. Systems Engineering and Electronics, 2013, 35(11): 2430–2438 [30] 魏鹏飞, 樊小朝, 史瑞静, 等. 基于改进麻雀搜索算法优化支持向量机的短期光伏发电功率预测[J]. 热力发电, 2021, 50(12): 74–79 WEI Pengfei, FAN Xiaochao, SHI Ruijing, et al. Short-term photovoltaic power generation forecast based on improved sparrow search algorithm optimized support vector machine[J]. Thermal Power Generation, 2021, 50(12): 74–79 [31] 李刚, 刘佳林, 王腾飞, 等. 基于相似日理论和IPSO-Elman模型的短期光伏发电功率预测[J]. 测控技术, 2020, 39(2): 91–97, 131 LI Gang, LIU Jialin, WANG Tengfei, et al. Short-term photovoltaic power forecast based on similar day theory and IPSO-Elman model[J]. Measurement & Control Technology, 2020, 39(2): 91–97, 131
|