[1] 丁世飞, 齐丙娟, 谭红艳. 支持向量机理论与算法研究综述[J]. 电子科技大学学报, 2011, 40(1):2-10 DING Shifei, QI Bingjuan, TAN Hongyan. An overview on theory and algorithm of support vector machines[J]. Journal of University of Electronic Science and Technology of China, 2011, 40(1):2-10
[2] 朱湘临, 凌婧, 王博, 等. 基于改进PSO-RBFNN的海洋蛋白酶发酵过程软测量[J]. 化工学报, 2018, 69(3):1221-1227 ZHU Xianglin, LING Jing, WANG Bo, et al. Soft-sensing modeling of marine protease fermentation process based on improved PSO-RBFNN[J]. CIESC Journal, 2018, 69(3):1221-1227
[3] 代伟, 柴天佑. 数据驱动的复杂磨矿过程运行优化控制方法[J]. 自动化学报, 2014, 40(9):2005-2014 DAI Wei, CHAI Tianyou. Data-driven optimal operational control of complex grinding processes[J]. Acta Automatica Sinica, 2014, 40(9):2005-2014
[4] 赵芝璞, 高超, 沈艳霞. 基于关联模糊神经网络和改进型蜂群算法的负荷预测方法[J]. 中国电力, 2018, 51(2):54-60 ZHAO Zhipu, GAO Chao, SHEN Yanxia. A method for load forecasting based on correlated fuzzy neural network and improved artificial bee colony algorithm[J]. Electric Power, 2018, 51(2):54-60
[5] 杨斌, 杨永军, 张亚, 等. 基于主成分分析与神经网络复合模型的汽轮机排汽焓计算[J]. 中国电力, 2018, 51(1):126-132 YANG Bin, YANG Yongjun, ZHANG Ya, et al. The calculation of turbine exhaust enthalpy based on the hybrid model of the principal component analysis and the BP neural network[J]. Electric Power, 2018, 51(1):126-132
[6] 安剑奇, 彭凯, 曹卫华. 基于动态神经网络的高炉炉壁不完备温度检测信息软测量方法[J]. 化工学报, 2016, 67(3):903-911 AN Jianqi, PENG Kai, CAO Weihua. A soft-sensing method for missing temperature information based on dynamic neural network on BF wall[J]. CIESC Journal, 2016, 67(3):903-911
[7] 杜必强, 孙立江. 基于PSO-SVM模型的焊接转子环焊缝超声缺陷识别[J]. 动力工程学报, 2017, 37(5):379-385 DU Biqiang, SUN Lijiang. Ultrasonic defect recognition for circumferential joints of welded rotors based on PSO-SVM model[J]. Journal of Chinese Society of Power Engineering, 2017, 37(5):379-385
[8] WEI Jiaxuan, ZHANG Ruisheng, YU Zhixuan, et al. A BPSO-SVM algorithm based on memory renewal and enhanced mutation mechanisms for feature selection[J]. Applied Soft Computing, 2017, 58:176-192.
[9] 赵慧材, 陈跃辉, 陈瑞先. 结合模糊粗糙集和支持向量机的电力负荷短期预测方法[J]. 中国电力, 2015, 48(2):45-48 ZHAO Huicai, CHEN Yuehui, CHEN Ruixian. A short-term power load forecasting method based on fuzzy rough sets and support vector machine[J]. Electric Power, 2015, 48(2):45-48
[10] 李辉. 基于在线支持向量回归算法的电站热耗率模型[J]. 中国电力, 2014, 47(7):21-25 LI Hui. The turbine heat rate model based on accurate online support vector regression algorithm[J]. Electric Power, 2014, 47(7):21-25
[11] CHEN Li, ZHOU Shuisheng. Sparse algorithm for robust LSSVM in primal space[J]. Neurocomputing, 2018, 275:2880-2891.
[12] JEBARANI E S, KUMAR S. Torque modeling of switched reluctance motor using LSSVM-DE[J]. Neurocomputing, 2016, 211:117-128.
[13] SUN Wei, SUN Jingyi. Daily PM2.5 concentration prediction based on principal component analysis and LSSVM optimized by cuckoo search algorithm[J]. Journal of Environmental Management, 2017, 188:144-152.
[14] YU Huihui, CHEN Yingyi, Shahbaz Gul Hassan, et al. Prediction of the temperature in a Chinese solar greenhouse based on LSSVM optimized by improved PSO[J]. Computers and Electronics in Agriculture, 2016, 122:94-102.
[15] 乔国华, 郭路遥, 吴一敌, 等. 基于遗传优化最小二乘支持向量机的变电站全寿命周期成本预测模型[J]. 中国电力, 2015, 48(11):142-148 QIAO Guohua, GUO Luyao, WU Yidi, et al. Substation life cycle cost prediction model of the least squares support vector machine optimized by genetic algorithm[J]. Electric Power, 2015, 48(11):142-148
[16] MIRJALILI S, MIRJALILI S M, LEWIS A. Grey wolf optimization[J]. Advances in Engineering Software, 2014, 69(7):46-61.
[17] 龙文, 赵东泉, 徐松金. 求解约束优化问题的改进灰狼优化算法[J]. 计算机应用, 2015, 35(9):2590-2595 LONG Wen, ZHAO Dongquan, XU Songjin. Improved grey wolf optimization algorithm for constrained optimization problem[J]. Journal of Computer Applications, 2015, 35(9):2590-2595
[18] 刘建军, 石定元, 武国宁. 基于Kent映射的混合混沌优化算法[J]. 计算机工程与设计, 2015, 36(6):1498-1503 LIU Jianjun, SHI Dingyuan, WU Guoning. Hybrid chaotic optimization algorithm based on Kent map[J]. Computer Engineering and Design, 2015, 36(6):1498-1503
[19] 龙文, 伍铁斌. 协调探索和开发能力的改进灰狼优化算法[J]. 控制与决策, 2017, 32(10):1-9 LONG Wen, WU Tiebin. Improved grey wolf optimization algorithm coordinating the ability of exploration and exploitation[J]. Control and Decision, 2017, 32(10):1-9
[20] 牛培峰, 陈科, 马云鹏, 等. 基于磷虾群算法的汽轮机热耗率建模应用[J]. 动力工程学报, 2016, 36(10):781-787 NIU Peifeng, CHEN Ke, MA Yunpeng, et al. Modelling of turbine heat rate based on krill herd algorithm and its application[J]. Journal of Chinese Society of Power Engineering, 2016, 36(10):781-787 |