[1] HE Y X, JIAO J, CHEN Q, et al. Urban long term electricity demand forecast method based on system dynamics of the new economic normal: The case of Tianjin[J]. Energy, 2017, 133: 9-22. [2] 章江. 时间序列预测方法及其在电力系统中的应用[D]. 长沙: 湖南大学, 2018. ZHANG Jiang. Time series forecasting method and its application in power system[D]. Changsha: Hunan University, 2018. [3] XU N, DANG Y G, GONG Y D. Novel grey prediction model with nonlinear optimized time response method for forecasting of electricity consumption in China[J]. Energy, 2017, 118: 473-480. [4] 石玉恒, 赵娜, 王凌, 等. 北京地区日最大电力负荷预测模型初探[J]. 中国电力, 2019, 52(8): 157-163 SHI Yuheng, ZHAO Na, WANG Ling, et al. Study on forecasting model of maximum daily power load in Beijing area[J]. Electric Power, 2019, 52(8): 157-163 [5] 李震, 张思, 任娴婷, 等. 基于数据驱动的线性聚类ARIMA长期电力负荷预测[J]. 科学技术与工程, 2020, 20(16): 6497-6504 LI Zhen, ZHANG Si, REN Xianting, et al. Long-term power load forecasting based on data-driven linear clustering ARIMA[J]. Science Technology and Engineering, 2020, 20(16): 6497-6504 [6] 邢晓敏, 何铁新, 郑雪瑞, 等. 基于ANN-dropout的配电网可靠性预测方法[J]. 南方电网技术, 2019, 13(2): 66-73 XING Xiaomin, HE Tiexin, ZHENG Xuerui, et al. Reliability prediction method of distribution network based on ANN-dropout[J]. Southern Power System Technology, 2019, 13(2): 66-73 [7] YANG Y L, CHE J X, DENG C Z, et al. Sequential grid approach based support vector regression for short-term electric load forecasting[J]. Applied Energy, 2019, 238: 1010-1021. [8] LIANG H B, ZOU J L, LI Z L, et al. Dynamic evaluation of drilling leakage risk based on fuzzy theory and PSO-SVR algorithm[J]. Future Generation Computer Systems, 2019, 95: 454-466. [9] 田书欣, 周全, 程浩忠, 等. 基于鸽群优化算法的支持向量机在电力需求总量预测中的应用[J]. 电力自动化设备, 2020, 40(5): 173-181 TIAN Shuxin, ZHOU Quan, CHENG Haozhong, et al. Application of pigeon-inspired optimization algorithm based SVM in total power demand forecasting[J]. Electric Power Automation Equipment, 2020, 40(5): 173-181 [10] 海涛, 范恒, 王楷杰, 等. 基于PSO-SVM算法的风电机组结冰故障诊断[J]. 智慧电力, 2021, 49(4): 1-6, 74 HAI Tao, FAN Heng, WANG Kaijie, et al. Icing fault diagnosis of wind turbines based on PSO-SVM algorithm[J]. Smart Power, 2021, 49(4): 1-6, 74 [11] 温珏. 基于改进人工鱼群算法优化参数的支持向量机研究—中长期电力需求预测应用[J]. 软件导刊, 2018, 17(3): 183-186 WEN Jue. Parameter optimization for support vectorm achine based on improved artificial fish swarm algorithm—mid-and-long term power demand forecasting[J]. Software Guide, 2018, 17(3): 183-186 [12] 何忠华. 基于蚁狮优化GM(1, 1)模型的北京市电力需求预测[J]. 现代工业经济和信息化, 2017, 7(22): 57-60, 83 HE Zhonghua. Beijing electricity demand forecast based on ant lion optimizer GM(1, 1) model[J]. Modern Industrial Economy and Informationization, 2017, 7(22): 57-60, 83 [13] 何廷一, 田鑫萃, 李胜男, 等. 基于蜂群算法改进的BP神经网络风电功率预测[J]. 电力科学与技术学报, 2018, 33(4): 22-28 HE Tingyi, TIAN Xincui, LI Shengnan, et al. Improved BP neural network based on Artificial Bee Colony algorithm for wind power prediction[J]. Journal of Electric Power Science and Technology, 2018, 33(4): 22-28 [14] 汤安迪, 韩统, 徐登武, 等. 基于混沌麻雀搜索算法的无人机航迹规划方法[J]. 计算机应用. 2021, 41(7): 2128-2136. TANG Andi, HAN Tong, XU Dengwu, et al. Path planning method of unmanned aerial vehicle based on chaos sparrow search algorithm[J]. Journal of Computer Applications. 2021, 41(7): 2128-2136. [15] 范海虹. 基于萤火虫算法的短期电力负荷预测方法[J]. 中国电力, 2021, 54(3): 141-148 FAN Haihong. Short-term power load forecasting method based on glowworm swarm optimization algorithm[J]. Electric Power, 2021, 54(3): 141-148 [16] 戴丽珍, 付涛, 杨刚, 等. 一种改进灰狼算法优化LSSVM的交通流量预测[J]. 小型微型计算机系统, 2020, 41(12): 2672-2676 DAI Lizhen, FU Tao, YANG Gang, et al. Traffic flow prediction method by LSSVM optimized by an improved GWO[J]. Journal of Chinese Computer Systems, 2020, 41(12): 2672-2676 [17] 王凌谊, 王志敏, 钱纹, 等. 适应供给侧结构性改革的中长期负荷预测拓展索洛模型研究[J]. 电力系统保护与控制, 2019, 47(18): 49-59 WANG Lingyi, WANG Zhimin, QIAN Wen, et al. Extended Solow regression model for mid/long-term load forecasting adapted to supply-side structural reform[J]. Power System Protection and Control, 2019, 47(18): 49-59 [18] 黄元生, 胡建军, 蔡雅倩. 基于耦合GPR-PSO的北京地区中长期电力需求预测[J]. 电测与仪表, 2020, 57(2): 74-80 HUANG Yuansheng, HU Jianjun, CAI Yaqian. Medium and long-term power demand forecasting in Beijing based on coupled GPR-PSO[J]. Electrical Measurement & Instrumentation, 2020, 57(2): 74-80 [19] 徐阳. 基于经济新常态的城市电网电量需求预测研究[D]. 北京: 华北电力大学, 2017. XU Yang. Electricity demand forecast of city power grid based on the new economic normal[D]. Beijing: North China Electric Power University, 2017. [20] GE T Z, HE K M, KE Q F, et al. Optimized product quantization for approximate nearest neighbor search[C]//2013 IEEE Conference on Computer Vision and Pattern Recognition. Portland, OR, USA. IEEE, 2013: 2946-2953. [21] MIRJALILI S, MIRJALILI S M, LEWIS A. Grey wolf optimizer[J]. Advances in Engineering Software, 2014, 69: 46-61. [22] 张慧, 贺松, 张硕, 等. 基于GWO-SVR的冠心病住院费用预测[J]. 智能计算机与应用, 2020, 10(11): 42-46 ZHANG Hui, HE Song, ZHANG Shuo, et al. Prediction of hospitalization costs for coronary heart disease based on GWO-SVR[J]. Intelligent Computer and Applications, 2020, 10(11): 42-46 [23] 任超. 基于DE-GWO-BP神经网络的电动汽车电池SOC预测[D]. 合肥: 合肥工业大学, 2020. REN Chao. SOC prediction of ev battery based on DE-GWO-BP neural network[D]. Hefei: Hefei University of Technology, 2020. [24] 杜尊峰, 邵玄玄, 王晓梅. 基于CP结合DE-GWO-SVR的海上风电基础结构损伤识别[J]. 振动与冲击, 2020, 39(22): 110-118 DU Zunfeng, SHAO Xuanxuan, WANG Xiaomei. Damage identification of an offshore wind turbine foundation based on a CP algorithm combined with the method of DE-GWO-SVR[J]. Journal of Vibration and Shock, 2020, 39(22): 110-118 [25] 李建民, 陈慧, 杨冬芹, 等. 改进GWO优化SVM的服务器性能预测[J]. 计算机工程与设计, 2019, 40(11): 3099-3105, 3163 LI Jianmin, CHEN Hui, YANG Dongqin, et al. Prediction of server performance based on SVM algorithm of improved GWO[J]. Computer Engineering and Design, 2019, 40(11): 3099-3105, 3163
|