中国电力 ›› 2021, Vol. 54 ›› Issue (9): 83-88.DOI: 10.11930/j.issn.1004-9649.202105016

• 电网 • 上一篇    下一篇

基于DE-GWO-SVR的中长期电力需求预测

张运厚1, 李婉莹2, 董福贵2   

  1. 1. 国家电网有限公司东北分部,辽宁 沈阳 110180;
    2. 华北电力大学 经济与管理学院,北京 102206
  • 收稿日期:2021-05-07 修回日期:2021-07-27 发布日期:2021-09-14
  • 作者简介:张运厚(1965-),男,高级工程师,从事电网规划研究,E-mail:zhangyunhou@126.com;李婉莹(1996-),女,通信作者,硕士研究生,从事能源管理理论与方法研究,E-mail:lwy1016@yeah.net;董福贵(1974-),男,博士,教授,从事能源管理理论与方法研究,E-mail:dfg@yeah.net
  • 基金资助:
    国家社会科学基金项目(配额制实施背景下面向区域差异的新能源发展战略研究,19BJY074)

Medium and Long-Term Power Demand Forecasting Based on DE-GWO-SVR

ZHANG Yunhou1, LI Wanying2, DONG Fugui2   

  1. 1. Northeast Branch of State Grid Corporation of China, Shenyang 110180, China;
    2. School of Economics and Management, North China Electric Power University, Beijing 102206, China
  • Received:2021-05-07 Revised:2021-07-27 Published:2021-09-14
  • Supported by:
    This work is supported by Chinese National Funding of Social Sciences (Research on New Energy Development Strategy Facing Regional Differences Under the Background of Renewable Portfolio Standard Implementation, No.19BJY074)

摘要: 电力需求预测是电力系统科学规划与运行的重要前提。根据相关性分析,从经济发展水平、城镇化水平、工业化水平、人口数量、产业结构、居民消费水平、电价和用电基数8个方面筛选出电力需求关键影响因素。利用差分进化(differential evolution,DE)和灰狼优化(grey wolf optimization,GWO)算法对支持向量回归模型(support vector regression,SVR)的参数进行优化,建立差分进化-灰狼优化-支持向量回归电力需求预测模型。选取北京市电力需求历史数据进行实证分析,比较不同模型的预测结果,验证组合优化模型的有效性及其预测的准确率,并对北京市2021—2025年电力需求进行预测。

关键词: 电力需求预测, 差分进化, 灰狼优化算法, 支持向量回归

Abstract: Power demand forecasting is an important prerequisite for the scientific planning and operation of power systems. According to the results of the correlation analysis, the key influencing factors of power demand are selected from eight aspects: economic development level, urbanization level, industrialization level, population size, industrial structure, household consumption level, electricity price and electricity base. Using differential evolution (DE) and grey wolf optimization (GWO) algorithms to optimize the parameters of the support vector regression (SVR), the power demand forecasting model is established. Based on the historical data of power demand in Beijing, this paper makes an empirical analysis, compares the prediction results of different models, verifies the effectiveness of the combined optimization model and the accuracy of prediction, forecasts the power demand of Beijing from 2021 to 2025.

Key words: power demand forecasting, differential evolution, grey wolf optimization algorithm, support vector machine