[1] 赵会茹, 赵一航, 郭森. 基于互补集合经验模态分解和长短期记忆神经网络的短期电力负荷预测[J]. 中国电力, 2020, 53(6): 48-55 ZHAO Huiru, ZHAO Yihang, GUO Sen. Short-term load forecasting based on complementary ensemble empirical mode decomposition and long short-term memory[J]. Electric Power, 2020, 53(6): 48-55 [2] 万灿, 宋永华. 新能源电力系统概率预测理论与方法及其应用[J]. 电力系统自动化, 2021, 45(1): 2-16 WAN Can, SONG Yonghua. Theories, methodologies and applications of probabilistic forecasting for power systems with renewable energy sources[J]. Automation of Electric Power Systems, 2021, 45(1): 2-16 [3] 苏小林, 张艳娟, 武中, 等. 规模化电动汽车充电负荷的预测及其对电网的影响[J]. 现代电力, 2018, 35(1): 45-54 SU Xiaolin, ZHANG Yanjuan, WU Zhong, et al. Forecasting the charging load of large-scale electric vehicle and its impact on the power grid[J]. Modern Electric Power, 2018, 35(1): 45-54 [4] 陈蓉珺, 何永秀, 陈奋开, 等. 基于系统动力学和蒙特卡洛模拟的电动汽车日负荷远期预测[J]. 中国电力, 2018, 51(9): 126-134 CHEN Rongjun, HE Yongxiu, CHEN Fenkai, et al. Long-term daily load forecast of electric vehicle based on system dynamics and Monte Carlo simulation[J]. Electric Power, 2018, 51(9): 126-134 [5] 何耀耀, 闻才喜, 许启发, 等. 考虑温度因素的中期电力负荷概率密度预测方法[J]. 电网技术, 2015, 39(1): 176-181 HE Yaoyao, WEN Caixi, XU Qifa, et al. A method to predict probability density of medium-term power load considering temperature factor[J]. Power System Technology, 2015, 39(1): 176-181 [6] 张林, 刘继春. 基于EEMD-SE和PSO-KELM的短期负荷区间预测方法[J]. 中国电力, 2021, 54(3): 132-140 ZHANG Lin, LIU Jichun. A short-term load interval forecasting method based on EEMD-SE and PSO-KELM[J]. Electric Power, 2021, 54(3): 132-140 [7] HONG T, FAN S. Probabilistic electric load forecasting: a tutorial review[J]. International Journal of Forecasting, 2016, 32(3): 914-938. [8] 杨秀, 陈斌超, 朱兰, 等. 基于相关性分析和长短期记忆网络分位数回归的短期公共楼宇负荷概率密度预测[J]. 电网技术, 2019, 43(9): 3061-3071 YANG Xiu, CHEN Binchao, ZHU Lan, et al. Short-term public building load probability density prediction based on correlation analysis and long- and short-term memory network quantile regression[J]. Power System Technology, 2019, 43(9): 3061-3071 [9] BRACALE A, CARAMIA P, DE FALCO P, et al. Multivariate quantile regression for short-term probabilistic load forecasting[J]. IEEE Transactions on Power Systems, 2020, 35(1): 628-638. [10] 何耀耀, 刘瑞, 撖奥洋. 基于实时电价与支持向量分位数回归的短期电力负荷概率密度预测方法[J]. 中国电机工程学报, 2017, 37(3): 768-776 HE Yaoyao, LIU Rui, HAN Aoyang. Short-term power load probability density forecasting method based on real time price and support vector quantile regression[J]. Proceedings of the CSEE, 2017, 37(3): 768-776 [11] 臧海祥, 刘冲冲, 滕俊, 等. 基于CNN-GRU分位数回归的短期母线负荷概率密度预测[J]. 智慧电力, 2020, 48(8): 24-30, 69 ZANG Haixiang, LIU Chongchong, TENG Jun, et al. Short-term bus load probability density forecasting based on CNN-GRU quantile regression[J]. Smart Power, 2020, 48(8): 24-30, 69 [12] QUAN H, SRINIVASAN D, KHOSRAVI A. Uncertainty handling using neural network-based prediction intervals for electrical load forecasting[J]. Energy, 2014, 73: 916-925. [13] 周建中, 张亚超, 李清清, 等. 基于动态自适应径向基函数网络的概率性短期负荷预测[J]. 电网技术, 2010, 34(3): 37-41 ZHOU Jianzhong, ZHANG Yachao, LI Qingqing, et al. Probabilistic short-term load forecasting based on dynamic self-adaptive radial basis function network[J]. Power System Technology, 2010, 34(3): 37-41 [14] 宗文婷, 卫志农, 孙国强, 等. 基于改进高斯过程回归模型的短期负荷区间预测[J]. 电力系统及其自动化学报, 2017, 29(8): 22-28 ZONG Wenting, WEI Zhinong, SUN Guoqiang, et al. Short-term load interval prediction based on improved Gaussian process regression model[J]. Proceedings of the CSU-EPSA, 2017, 29(8): 22-28 [15] 黄南天, 齐斌, 刘座铭, 等. 采用面积灰关联决策的高斯过程回归概率短期负荷预测[J]. 电力系统自动化, 2018, 42(23): 64-71 HUANG Nantian, QI Bin, LIU Zuoming, et al. Probabilistic short-term load forecasting using Gaussian process regression with area grey incidence decision making[J]. Automation of Electric Power Systems, 2018, 42(23): 64-71 [16] 刘升伟, 王星华, 鲁迪, 等. 基于改进高斯过程回归的短期负荷概率区间预测方法[J]. 电力系统保护与控制, 2020, 48(1): 18-25 LIU Shengwei, WANG Xinghua, LU Di, et al. Electric load probabilistic interval prediction method based on improved Gaussian process regression[J]. Power System Protection and Control, 2020, 48(1): 18-25 [17] WANG Y, ZHANG N, TAN Y S, et al. Combining probabilistic load forecasts[J]. IEEE Transactions on Smart Grid, 2019, 10(4): 3664-3674. [18] 徐诗鸿, 张宏志, 林湘宁, 等. 基于改进评价指标的波动性负荷短期区间预测[J]. 电力系统自动化, 2020, 44(2): 156-163 XU Shihong, ZHANG Hongzhi, LIN Xiangning, et al. Improved evaluation index based short-term interval prediction of fluctuation load[J]. Automation of Electric Power Systems, 2020, 44(2): 156-163 [19] 王玥, 张宇帆, 李昭昱, 等. 即插即用能量组织日前负荷概率预测方法[J]. 电网技术, 2019, 43(9): 3055-3060 WANG Yue, ZHANG Yufan, LI Zhaoyu, et al. Day-ahead probability load forecasting of energy tissues with plug-and-play function[J]. Power System Technology, 2019, 43(9): 3055-3060 [20] CLEVELAND U R B, CLEVELAND U W S, MCRAE U J E, et al. STL: a seasonal-trend decomposition procedure based on loess[J]. Journal of Official Statistics, 1990, 6(1): 3-73. [21] 赵娜, 石玉恒, 李乃杰, 等. 温湿变化对北京城区气象敏感电力负荷的影响分析[J]. 中国电力, 2017, 50(2): 175-180 ZHAO Na, SHI Yuheng, LI Naijie, et al. The relationship of temperature humidity index and meteorology sensitive power load in Beijing[J]. Electric Power, 2017, 50(2): 175-180 [22] 雷绍兰, 古亮, 杨佳, 等. 重庆地区电力负荷特性及其影响因素分析[J]. 中国电力, 2014, 47(12): 61-65, 71 LEI Shaolan, GU Liang, YANG Jia, et al. Analysis of electric power load characteristics and its influencing factors in Chongqing region[J]. Electric Power, 2014, 47(12): 61-65, 71 [23] 庞传军, 余建明, 张波, 等. 基于梯度提升树计及非线性的电力负荷影响因素分析[J]. 电力系统保护与控制, 2020, 48(24): 71-78 PANG Chuanjun, YU Jianming, ZHANG Bo, et al. Nonlinear correlation analysis of influence factors of a power load based on a gradient boosting decision tree[J]. Power System Protection and Control, 2020, 48(24): 71-78 [24] BRODERSEN K H, GALLUSSER F, KOEHLER J, et al. Inferring causal impact using Bayesian structural time-series models[J]. The Annals of Applied Statistics, 2015, 9(1): 247-274. [25] BLEI D M, KUCUKELBIR A, MCAULIFFE J D. Variational inference: a review for statisticians[J]. Journal of the American Statistical Association, 2017, 112(518): 859-877.
|