[1] 单葆国, 孙祥栋, 李江涛, 等. 经济新常态下中国电力需求增长研判[J]. 中国电力, 2017, 50(01): 19-24. SHAN Baoguo, SUN Xiangdong, LI Jiangtao, et al. Research on the electricity demand growth of China under new economic normal[J]. Electric Power, 2017, 50(01): 19-24. [2] 张云, 邓桂丰, 李秀珍. 经济新常态下中国产业结构低碳转型与成本测度[J]. 上海财经大学学报, 2015, 17(4): 10-20. ZHANG Yun, DENG Guifeng, LI Xiuzhen. Low-carbon transition of Chinese industrial and cost measurement under Chinese economy’s new normal[J], Journal of Shanghai University of Finance Economics, 2015, 17(4): 10-20. [3] PAOLETTI S, GARULLI A, VICINO A. Electric load forecasting in the presence of active demand[C]//IEEE 51st Annual Conference on Decision and Control. Maui, USA, 2012: 2395–2400. [4] 国家行政学院经济学教研部. 中国经济新常态[M]. 北京: 人民出版社, 2014: 47–72. [5] 单葆国, 韩新阳, 谭显东, 等. 中国“十三五”及中长期电力需求研究[J]. 中国电力, 2015, 48(1): 6-10,14. SHAN Baoguo, HAN Xinyang, TAN Xiandong, et al. Research on China’s 13th Five-Year and medium and long term electric power demand[J]. Electric Power, 2015, 48(1): 6-10,14. [6] PATERAKIS N G, CATALAO J P S, TASCIKARAOGLU A, et al. Demand response driven load pattern elasticity analysis for smart households[C]//IEEE 5th International Conference on Power Engineering, Energy and Electrical Drives. Riga, Latvia, 2015: 399–404. [7] GARULLI A, PAOLETTI S, VICINO A. Models and techniques for electric load forecasting in the presence of demand response[J]. IEEE Trans on Control Systems Technology, 2015, 23(3): 1087-1097 [8] 单体华, 秦砺寒, 韩江磊, 等. 基于FWA-LSSVR智能算法的钢铁行业用电量预测研究[J]. 中国电力, 2016, 49(S1): 89-93. SHAN Tihua, QIN Lihan, HAN Jianglei, et al. Forecasting studies on electricity consumption of iron and steel industry based on FWA-LSSVR intelligent algorithm[J]. Electric Power, 2016, 49(S1): 89-93. [9] 周德强. 改进的灰色Verhulst模型在中长期负荷预测中的应用[J]. 电网技术, 2009, 33(18): 124-127. ZHOU Deqiang. The Application of modified Grey Verhulst Model in medium and long term load predication[J]. Power System Technology, 2009, 33(18): 124-127. [10] 马瑞, 彭舟, 蒋诗谣, 等. 季节划分下产业用电量关联分析及预测[J]. 中国电力, 2015, 48(07): 82-88. MA Rui, PENG Zhou, JIANG Shiyao, et al. Correlation analysis and prediction of industrial power consumption with division of seasons[J]. Electric power, 2015, 48(07): 82-88. [11] 王德文, 孙志伟. 电力用户侧大数据分析与并行负荷预测[J]. 中国电机工程学报, 2015, 35(3): 527-537. WANG Dewen, SUN Zhiwei. Big data analysis and parallel load forecasting of electric power user side[J]. Proceedings of the CSEE, 2015, 35(3): 527-537. [12] 王大鹏, 汪秉文. 基于变权缓冲灰色模型的中长期负荷预测[J]. 电网技术, 2013, 37(1): 167-171. WANG Dapeng, WANG Bingwen. Medium- and long-term load forecasting based on variable weights Buffer Grey Model[J]. Power System Technology, 2013, 37(1): 167-171. [13] 叶宗斌, 周步祥, 林楠, 等. 基于等维新息指数平滑法模型的中长期负荷预测[J]. 电力系统保护与控制, 2012, 40(18): 47-51. YE Zongbin, ZHOU Buxiang, LIN Nan, et al. Medium/long term load forecast of exponential smoothing method based on information and equal dimensional operators[J]. Power System Protection and Control, 2012, 40(18): 47-51.
[14] 吴耀武, 娄素华, 卢斯煜, 等. 基于改进的 D-S 证据理论的中长期负荷预测方法[J]. 电工技术学报, 2012, 27(8): 157-162. Wu Yaowu, Lou Suhua, Lu Siyu, et al. The medium and long-term load forecasting based on improved D-S evidential theory[J]. Transactions of China Electrotechnical Society, 2012, 27(8): 157-162. [15] 郭鸿业, 陈启鑫, 夏清, 等. 考虑经济因素时滞效应的月度负荷预测方法[J]. 电网技术, 2016, 40(2): 514-520. GUO Jingye, CHEN Qixin, XIA Qing, et al. Study on mid-term electricity load forecast considering time lag effects of economic factors[J]. Power System Technology, 2016, 40(2): 514-520. [16] 王保义, 王冬阳, 张少敏. 基于Spark和IPPSO_LSSVM的短期分布式电力负荷预测算法[J]. 电力自动化设备, 2016, 36(1): 117-122. WANG Baoyi, WANG Dongyang, ZHANG Shaomin. Distributed short-term load forecasting algorithm based on spark and IPPSO_LSSVM[J]. Electric Power Automation Equipment, 2016, 36(1): 117-122.
|