中国电力 ›› 2017, Vol. 50 ›› Issue (12): 22-26.DOI: 10.11930/j.issn.1004-9649.201708230

• 电力经济 • 上一篇    下一篇

辽宁省经济指标与电力需求相关性分析

邓鑫阳, 蒋蕾, 李雍睿, 于海洋   

  1. 1. 国网辽宁省电力有限公司经济技术研究院,辽宁 沈阳 110015;
    2. 国网辽宁省电力有限公司, 辽宁 沈阳 110004
  • 收稿日期:2017-08-15 出版日期:2017-12-20 发布日期:2018-01-30
  • 作者简介:邓鑫阳(1989— ),男,辽宁沈阳人,硕士,工程师,从事电网规划,电力系统分析与控制研究。E-mail:dengxinyanghit@126.com
  • 基金资助:
    国家电网公司科技项目(5222JJ17000X);国网辽宁省电力有限公司科技项目(5222JJ170010)

Correlation Analysis on Economic Indicators and Electric Power Demand of Liaoning Province

DENG Xinyang, JIANG Lei, LI Yongrui, YU Haiyang   

  1. 1. State Grid Liaoning Electric Power Company Limited Economic Research Institute, Shenyang 110015, China;
    2. State Grid Liaoning Electric Power Company Limited, Shenyang 110004, China
  • Received:2017-08-15 Online:2017-12-20 Published:2018-01-30
  • Supported by:
    This work is supported by the Science and Technology Project of SGCC (No.5222JJ17000X) and the Science and Technology Project of State Grid Liaoning Elcetric Power Company (No.5222JJ170010).

摘要: 电力在经济发展中扮演的角色越来越重要,把握电力需求与经济增长之间的相互作用对准确预测电力需求有着重要意义。辽宁是东北地区的代表性省份,基于“十一五”以来辽宁省经济发展、电力需求等情况,分析本省乃至本地区经济结构调整对电力需求的影响。对辽宁省2005—2016年主要经济指标数据进行电力需求相关性分析,选取得到公共财政预算支出、全社会货运量及地区生产总值等强相关性指标,采用岭回归方法建立全社会用电量预测模型,并对“十三五”用电需求进行预测,以期为政府部门和电网公司决策提供依据。

关键词: 经济指标, 电力需求, 回归分析, 预测

Abstract: Electric power plays an increasingly important role in economic development. It is important for accurate power demand prediction to understand the interaction between electric power demand and economic growth. Based on the economic development and electric power demand of Liaoning Province during 2005-2016, this paper analyzes the influence of economic structure adjustment on electric power demand. The data of main economic indicators of Liaoning Province are selected for a correlation analysis of electric power demand. Such strong correlation indicators as public financial expenditure budget, gross domestic product (GDP) and total freight volume are used to establish a forecasting model of total electricity consumption by using the ridge regression analysis method, and the electric power demand of Liaoning Province during the 13th Five-Year Plan period (2016-2020) is predicted, which can provide the basis for the decision-making of government departments and the power supply companies.

Key words: economic indicators, electric power demand, regression analysis, prediction

中图分类号: