[1] 雷霄, 孙栩, 王薇薇, 等. 多馈入系统直流间耦合程度量化表征方法[J]. 中国电力, 2021, 54(9): 66–73 LEI Xiao, SUN Xiang, WANG Weiwei, et al. A characterization method for coupling relation in multi-infeed HVDC system[J]. Electric Power, 2021, 54(9): 66–73 [2] 黄志光, 曹路, 李建华, 等. 混合多馈入直流作用下江苏受端电网安全稳定性评估及改善[J]. 中国电力, 2021, 54(9): 55–65 HUANG Zhiguang, CAO Lu, LI Jianhuang, et al. Evaluation and improvement of security and stability of Jiangsu receiving-end power grid with hybrid multi-infeed DC[J]. Electric Power, 2021, 54(9): 55–65 [3] TAO Q, XUE Y. Quantitative assessment for commutation security based on extinction angle trajectory[J]. Journal of Modern Power Systems and Clean Energy, 2020, 9(2): 328–337. [4] 方珂, 柯德平, 孙元章, 等. 考虑大规模直流馈入稳定约束的电网优化调度模型[J]. 南方电网技术, 2022, 16(7): 1–9 FANG Ke, KE Deping, SUN Yuanzhang, et al. Grid optimal dispatching model considering stability constraints of large-scale HVDC infeed[J]. Southern Power System Technology, 2022, 16(7): 1–9 [5] 杨堤, 程浩忠, 姚良忠, 等. 多端直流输电接入下的交直流混联系统电压稳定性研究综述[J]. 电网技术, 2015, 39(8): 2201–2209 YANG Di, CHENG Haozhong, YAO Liangzhong, et al. Research review on AC/DC hybrid system with multi-terminal HVDC[J]. Power System Technology, 2015, 39(8): 2201–2209 [6] 梁伟, 吴林林, 赖启平, 等. 风电直流送出系统送端交流故障下风机过电压研究[J]. 中国电力, 2023, 56(4): 28–37 LIANG Wei, WU Linlin, LAI Qiping, et al. Study on overvoltage of wind farm under AC fault at sending end of HVDC transmission system[J]. Electric Power, 2023, 56(4): 28–37 [7] 胡益, 王晓茹, 滕予非, 等. 特高压直流闭锁后的交直流混联受端电网最优切负荷方案[J]. 电力系统自动化, 2018, 42(22): 98–106 HU Yi, WANG Xiaoru, TENG Yufei, et al. Optimal load shedding scheme for AC/DC hybrid receiving end power grid after UHVDC blocking[J]. Automation of Electric Power Systems, 2018, 42(22): 98–106 [8] XU X, ZHANG H, LI C, et al. Optimization of the event-driven emergency load-shedding considering transient security and stability constraints[J]. IEEE Transactions on Power Systems, 2017, 32(4): 2581–2592. [9] 孙大雁, 周海强, 熊浩清, 等. 基于灵敏度分析的直流受端系统紧急切负荷控制优化方法[J]. 中国电机工程学报, 2018, 38(24): 7267–7275, 7453 SUN Dayan, ZHOU Haiqiang, XIONG Haoqing, et al. A sensitivities analysis based emergency load shedding optimization method for the HVDC receiving end system[J]. Proceedings of the CSEE, 2018, 38(24): 7267–7275, 7453 [10] 陈庆, 周海强, 朱斌, 等. 协调经济性及事故评级的紧急减负荷控制优化方法[J]. 电网技术, 2016, 40(4): 1044–1050 CHEN Qing, ZHOU Haiqiang, ZHU Bin, et al. Coordinated emergency load shedding control optimization algorithm for economic cost and accident assessment[J]. Power System Technology, 2016, 40(4): 1044–1050 [11] 刘萌, 徐陶阳, 李常刚, 等. 基于粒子群算法的受端电网紧急切负荷优化[J]. 山东大学学报(工学版), 2019, 49(1): 120–128 LIU Meng, XU Taoyang, LI Changgang, et al. Optimization of emergency load shedding of receiving-end power grid based on particle swarm optimization[J]. Journal of Shandong University (Engineering Science), 2019, 49(1): 120–128 [12] 王路平, 谢小荣, 刘颖, 等. 多直流馈入受端电网短期频率稳定性的实时协调控制方法[J]. 中国电机工程学报, 2018, 38(8): 2205–2212, 2531 WANG Luping, XIE Xiaorong, LIU Ying, et al. Real-time coordinated control of short-term frequency stability for the receiving-end systems with multi-infeed HVDC transmissions[J]. Proceedings of the CSEE, 2018, 38(8): 2205–2212, 2531 [13] 许涛, 励刚, 于钊, 等. 多直流馈入受端电网频率紧急协调控制系统设计与应用[J]. 电力系统自动化, 2017, 41(8): 98–104 XU Tao, LI Gang, YU Zhao, et al. Design and application of emergency coordination control system for multi-infeed HVDC receiving-end system coping with frequency stability problem[J]. Automation of Electric Power Systems, 2017, 41(8): 98–104 [14] 董希建, 罗剑波, 李雪明, 等. 交直流混联受端电网频率紧急协调控制技术及应用[J]. 电力系统保护与控制, 2018, 46(18): 59–66 DONG Xijian, LUO Jianbo, LI Xueming, et al. Research and application of frequency emergency coordination and control technology in hybrid AC/DC power grids[J]. Power System Protection and Control, 2018, 46(18): 59–66 [15] 石正, 许寅, 吴翔宇, 等. 交直流混联电网系统保护策略校核与辅助决策方法[J]. 电力自动化设备, 2020, 40(4): 25–31 SHI Zheng, XU Yin, WU Xiangyu, et al. Assessment of system protection strategy and aided decision scheme for AC/DC hybrid power systems[J]. Electric Power Automation Equipment, 2020, 40(4): 25–31 [16] 李碧君, 李兆伟, 吴雪莲, 等. 多直流馈入受端电网两段式频率安全紧急控制策略研究[J]. 中国电力, 2017, 50(2): 169–174, 180 LI Bijun, LI Zhaowei, WU Xuelian, et al. Study on the two-stage frequency security emergency control strategy for multi-Infeed HVDC Receiving Systems[J]. Electric Power, 2017, 50(2): 169–174, 180 [17] ZHANG H, LI C, LIU Y. Quantitative frequency security assessment method considering cumulative effect and its applications in frequency control[J]. International Journal of Electrical Power & Energy Systems, 2015, 65: 12–20. [18] 谢宇峥, 张恒旭, 李常刚, 等. 考虑风电机组频率保护的送端电网有序高频切机策略[J]. 电力系统自动化, 2021, 45(9): 153–161 XIE Yuzheng, ZHANG Hengxu, LI Changgang, et al. Orderly over-frequency generator tripping strategy for sending-end power grid considering wind turbine frequency protection[J]. Automation of Electric Power Systems, 2021, 45(9): 153–161 [19] 徐岩, 郅静, 王祥晖. 基于N-1原则的输电断面热稳定功率极限评估[J]. 电力系统及其自动化学报, 2017, 29(1): 13–17 XU Yan, ZHI Jing, WANG Xianghui. Evaluation on thermal stability power limit of transmission section based on N-1 principle[J]. Proceedings of the CSU-EPSA, 2017, 29(1): 13–17 [20] A W I, B J W C. Improving solver success in reaching feasibility for sets of nonlinear constraints[J]. Computers & Operations Research, 2008, 35(5): 1394–1411. [21] SMITH L, CHINNECK J, AITKEN V. Improved constraint consensus methods for seeking feasibility in nonlinear programs[J]. Computational Optimization and Applications, 2013, 54: 555–578. [22] HAMZA N M, ESSAM D L, SARKER R A. Constraint consensus mutation-based differential evolution for constrained optimization[J]. IEEE Transactions on Evolutionary Computation, 2016, 20(3): 447–459. [23] ZHANG J, SANDERSON A C. JADE: adaptive differential evolution with optional external archive[J]. IEEE Transactions on Evolutionary Computation, 2009, 13(5): 945–958. [24] PADHYE N, BHARDAWAJ P, DEB K. Improving differential evolution through a unified approach[J]. Journal of Global Optimization, 2013, 55(4): 771–799. [25] 高文浩, 赵海兵, 殷爽睿, 等. 考虑负荷虚拟储能特性的商业区储能优化配置[J]. 中国电力, 2020, 53(4): 96–104 GAO Wenhao, ZHAO Haibing, YIN Shuangrui, et al. Optimal configuration of BESS in commercial area considering virtual energy storage characteristics of load[J]. Electric Power, 2020, 53(4): 96–104
|