中国电力 ›› 2020, Vol. 53 ›› Issue (9): 189-194.DOI: 10.11930/j.issn.1004-9649.201907156

• 发电 • 上一篇    下一篇

基于LSSVM的汽轮机阀门流量特性辨识及应用

王志杰1,2, 朱晓星1,2, 王锡辉1,2, 王志鹏1   

  1. 1. 湖南省湘电试验研究院有限公司,湖南 长沙 410007;
    2. 高效清洁火力发电技术湖南省重点实验室,湖南 长沙 410007
  • 收稿日期:2019-07-18 修回日期:2019-12-20 发布日期:2020-09-09
  • 作者简介:王志杰(1982—),男,博士,高级工程师,从事热工自动控制及源网协调技术研究,E-mail: 20025306@163.com
  • 基金资助:
    湖南省科技创新平台与人才计划资助项目(2016TP1027)

Identification and Application of the Flow Characteristics of Steam Turbine Valve Based on LSSVM

WANG Zhijie1,2, ZHU Xiaoxing1,2, WANG Xihui1,2, WANG Zhipeng1   

  1. 1. Hunan Xiangdian Test Research Institute Co., Ltd., Changsha 410007, China;
    2. Hunan Key Laboratory of High Efficiency Clean Thermal Power Generation Technology, Changsha 410007, China
  • Received:2019-07-18 Revised:2019-12-20 Published:2020-09-09
  • Supported by:
    This work is supported by the Project of Hunan Science and Technology Innovation Platform and Talent Plan (No.2016TP1027)

摘要: 阀门流量特性的准确辨识对于汽轮机控制至关重要。提出了一种基于最小二乘支持向量机(LSSVM)的汽轮机阀门流量特性辨识方法:通过对机组的历史运行数据进行筛选,获得其处于稳定工况下的运行数据;利用LSSVM辨识由综合阀位指令、主蒸汽压力、调节级压力等构成的主要参数向量与计算获得的汽轮机实际进汽流量之间的关系;最后利用已建立的LSSVM模型,并通过改变主要参数向量值来模拟汽轮机阀门流量特性试验的工况,进而实现对汽轮机阀门流量特性的辨识。该方法不需要进行汽轮机阀门流量特性试验,减轻了工作量,避免了试验方法对机组安全稳定运行带来的不利影响。

关键词: 最小二乘支持向量机, 数据筛选, 流量特性, 辨识

Abstract: The accurate identification of the valve flow characteristic of steam turbine is of great importance for the turbine control. In this paper, a method based on least-squares support vector machine (LSSVM) is proposed to identify the valve flow characteristics of steam turbine. The historical operation data of the unit was screened to obtain the data under stable condition. Then LSSVM was applied to identify the relationship between the main parameter vector, which was composed of the integrated valve position command, main steam pressure, regulating stage pressure, etc., and the calculated actual steam flow of turbine. Finally, on the basis of the established LSSVM model, the working condition of steam turbine valve flow characteristic testing was simulated by changing the values of main parameter vector, so as to identify the steam turbine valve flow characteristics. This method can be implemented without doing any steam turbine valve flow characteristic test, which greatly reduces the workload and avoids the adverse effect of the test method on the operation security and stability of the unit.

Key words: least squares support vector machine, data screening, flow characteristics, identification