中国电力 ›› 2025, Vol. 58 ›› Issue (2): 22-32.DOI: 10.11930/j.issn.1004-9649.202406070
杨鹏辉1(), 钱国超2, 白浩3(
), 刘红文2, 杨万先1, 石晓4
收稿日期:
2024-06-20
出版日期:
2025-02-28
发布日期:
2025-02-25
作者简介:
杨鹏辉(1990—),男,学士,工程师,从事电力系统继电保护与控制技术研究,E-mail1275920356@qq.com基金资助:
Penghui YANG1(), Guochao QIAN2, Hao BAI3(
), Hongwen LIU2, Wanxian YANG1, Xiao SHI4
Received:
2024-06-20
Online:
2025-02-28
Published:
2025-02-25
Supported by:
摘要:
针对配电网高阻接地故障时故障感知与辨识存在的难题,提出了基于阻尼率变化量的参数不对称配电网高阻接地故障感知方法,通过有源逆变装置主动短时调控零序电压,根据故障前后系统阻尼率变化量大小判断故障是否发生。在实现高阻接地故障灵敏感知的基础上,进一步提出了基于系统零序等值导纳相角变化特征的故障类型辨识方法,主动改变零序电压幅值调控系数,依据不同接地方式下的导纳相角变化轨迹,实现瞬时性和永久性接地故障类型的准确辨识。仿真分析表明:所提方法适用于三相参数不对称配电网,在不同运行方式下均能实现低、高阻接地故障的感知与辨识,抗过渡电阻能力强,具有较强的适用性。
杨鹏辉, 钱国超, 白浩, 刘红文, 杨万先, 石晓. 参数不对称配电网高阻接地故障感知与辨识方法[J]. 中国电力, 2025, 58(2): 22-32.
Penghui YANG, Guochao QIAN, Hao BAI, Hongwen LIU, Wanxian YANG, Xiao SHI. High Resistance Grounding Fault Perception and Identification Method in Asymmetric Distribution Network[J]. Electric Power, 2025, 58(2): 22-32.
图 3 线路参数不对称配电网中性点零序电压随过渡电阻的变化情况
Fig.3 The change of neutral point zero sequence voltage with transition resistance in asymmetric distribution network with line parameters
系统对地电导 | 系统对地电容 | 不对称度 | 消弧线圈电感 | |||
2.5×10–4 | 30 | 1 | 0.322 |
表 1 10 kV非有效接地系统典型参数
Table 1 Typical parameters of 10 kV non-effective grounding system
系统对地电导 | 系统对地电容 | 不对称度 | 消弧线圈电感 | |||
2.5×10–4 | 30 | 1 | 0.322 |
图 4 零序等值导纳相角与幅值随调控系数及过渡电阻的变化趋势
Fig.4 The variation trend of phase angle and amplitude of zero sequence equivalent admittance with control coefficient and transition resistance
图 5 参数不对称接地配电网接地故障感知与类型辨识实现流程
Fig.5 The realization process of grounding fault perception and type identification of parameter asymmetric grounding distribution network
系统仿真参数 | 数值 | |||
相对地泄露电阻/kΩ | RA | 314.136 | ||
RB | 325.262 | |||
RC | 309.858 | |||
相对地电容/μF | CA | 0.51 | ||
CB | 0.40 | |||
CC | 0.61 | |||
消弧线圈电感/H | L | 6.060 |
表 2 系统仿真参数
Table 2 System simulation parameters
系统仿真参数 | 数值 | |||
相对地泄露电阻/kΩ | RA | 314.136 | ||
RB | 325.262 | |||
RC | 309.858 | |||
相对地电容/μF | CA | 0.51 | ||
CB | 0.40 | |||
CC | 0.61 | |||
消弧线圈电感/H | L | 6.060 |
∞ | 38.93∠147.70° | 866.03∠0° | 0.43∠87.53° | |||
10 | 866.03∠0° | 653.34∠26.24° | ||||
100 | 866.03∠0° | 65.58∠26.53° | ||||
866.03∠0° | 6.75∠29.40° | |||||
866.03∠0° | 1.56∠40.17° | |||||
781.10∠–129.87° | 866.03∠0° | 0.72∠57.70° |
表 3 线路参数不对称配电网不同接地故障电阻下的调控数值(不接地)
Table 3 Control values of distribution network with asymmetric line parameters under different grounding fault resistances (ungrounded)
∞ | 38.93∠147.70° | 866.03∠0° | 0.43∠87.53° | |||
10 | 866.03∠0° | 653.34∠26.24° | ||||
100 | 866.03∠0° | 65.58∠26.53° | ||||
866.03∠0° | 6.75∠29.40° | |||||
866.03∠0° | 1.56∠40.17° | |||||
781.10∠–129.87° | 866.03∠0° | 0.72∠57.70° |
∞ | 377.10∠–44.89° | 866.03∠0° | 0.032∠–54.66° | |||
10 | 866.03∠0° | 653.14∠26.19° | ||||
100 | 866.03∠0° | 65.32∠26.17° | ||||
866.03∠0° | 6.54∠25.93° | |||||
866.03∠0° | 1.31∠24.82° | |||||
866.03∠0° | 0.41∠22.05° |
表 4 线路参数不对称配电网不同接地故障电阻下的调控数值(经消弧线圈接地)
Table 4 Control values of distribution network with asymmetric line parameters under different grounding fault resistances (grounded by arc suppression coil)
∞ | 377.10∠–44.89° | 866.03∠0° | 0.032∠–54.66° | |||
10 | 866.03∠0° | 653.14∠26.19° | ||||
100 | 866.03∠0° | 65.32∠26.17° | ||||
866.03∠0° | 6.54∠25.93° | |||||
866.03∠0° | 1.31∠24.82° | |||||
866.03∠0° | 0.41∠22.05° |
过渡电 阻Rf/Ω | d | Δd | ||||||||||||||
实际 | 仿真 | 误差/ % | 实际 | 仿真 | 误差/ % | |||||||||||
∞ | 9.49×10–6 | 9.57×10–6 | 0.84 | 1.520 | 1.525 | 0.33 | 0.02 | 0.00 | ||||||||
10 | 1.00×10–1 | 9.99×10–2 | 0.10 | 1.520 | 1.526 | 0.39 | 208.38 | 208.36 | ||||||||
100 | 1.00×10–2 | 1.00×10–2 | 0.00 | 1.520 | 1.533 | 0.86 | 20.76 | 20.74 | ||||||||
1.01×10–3 | 1.01×10–3 | 0.00 | 1.520 | 1.518 | 0.13 | 2.12 | 2.10 | |||||||||
2.09×10–4 | 2.09×10–4 | 0.00 | 1.520 | 1.519 | 0.07 | 0.44 | 0.42 | |||||||||
7.20×10–5 | 7.17×10–5 | 0.42 | 1.520 | 1.506 | 0.92 | 0.15 | 0.13 |
表 5 线路参数不对称配电网在不同接地故障电阻下的故障感知结果(不接地)
Table 5 Fault perception results of distribution network with asymmetric line parameters under different grounding fault resistances (ungrounded)
过渡电 阻Rf/Ω | d | Δd | ||||||||||||||
实际 | 仿真 | 误差/ % | 实际 | 仿真 | 误差/ % | |||||||||||
∞ | 9.49×10–6 | 9.57×10–6 | 0.84 | 1.520 | 1.525 | 0.33 | 0.02 | 0.00 | ||||||||
10 | 1.00×10–1 | 9.99×10–2 | 0.10 | 1.520 | 1.526 | 0.39 | 208.38 | 208.36 | ||||||||
100 | 1.00×10–2 | 1.00×10–2 | 0.00 | 1.520 | 1.533 | 0.86 | 20.76 | 20.74 | ||||||||
1.01×10–3 | 1.01×10–3 | 0.00 | 1.520 | 1.518 | 0.13 | 2.12 | 2.10 | |||||||||
2.09×10–4 | 2.09×10–4 | 0.00 | 1.520 | 1.519 | 0.07 | 0.44 | 0.42 | |||||||||
7.20×10–5 | 7.17×10–5 | 0.42 | 1.520 | 1.506 | 0.92 | 0.15 | 0.13 |
过渡电 阻 | d | Δd | ||||||||||||||
实际 | 仿真 | 误差/ % | 实际 | 仿真 | 误差/ % | |||||||||||
∞ | 9.49×10–6 | 9.57×10–6 | 0.84 | 1.520 | 1.525 | 0.33 | 0.02 | 0.00 | ||||||||
10 | 1.00×10–1 | 9.99×10–2 | 0.10 | 1.520 | 1.526 | 0.39 | 208.38 | 208.36 | ||||||||
100 | 1.00×10–2 | 1.00×10–2 | 0.00 | 1.520 | 1.533 | 0.86 | 20.76 | 20.74 | ||||||||
1.01×10–3 | 1.01×10–3 | 0.00 | 1.520 | 1.518 | 0.13 | 2.12 | 2.10 | |||||||||
2.09×10–4 | 2.09×10–4 | 0.00 | 1.520 | 1.519 | 0.07 | 0.44 | 0.42 | |||||||||
7.20×10–5 | 7.17×10–5 | 0.42 | 1.520 | 1.506 | 0.92 | 0.15 | 0.13 |
表 6 线路参数不对称配电网在不同接地故障电阻下的故障感知结果(经消弧线圈接地)
Table 6 Fault perception results of distribution network with asymmetric line parameters under different grounding fault resistances (grounded by arc suppression coil)
过渡电 阻 | d | Δd | ||||||||||||||
实际 | 仿真 | 误差/ % | 实际 | 仿真 | 误差/ % | |||||||||||
∞ | 9.49×10–6 | 9.57×10–6 | 0.84 | 1.520 | 1.525 | 0.33 | 0.02 | 0.00 | ||||||||
10 | 1.00×10–1 | 9.99×10–2 | 0.10 | 1.520 | 1.526 | 0.39 | 208.38 | 208.36 | ||||||||
100 | 1.00×10–2 | 1.00×10–2 | 0.00 | 1.520 | 1.533 | 0.86 | 20.76 | 20.74 | ||||||||
1.01×10–3 | 1.01×10–3 | 0.00 | 1.520 | 1.518 | 0.13 | 2.12 | 2.10 | |||||||||
2.09×10–4 | 2.09×10–4 | 0.00 | 1.520 | 1.519 | 0.07 | 0.44 | 0.42 | |||||||||
7.20×10–5 | 7.17×10–5 | 0.42 | 1.520 | 1.506 | 0.92 | 0.15 | 0.13 |
调控系数 | 系统零序等值导纳/S | |||||||||||
10 Ω | 100 Ω | 500 Ω | 16 kΩ | 瞬时性故障 | ||||||||
1.00 | 0.477∠88.63° | 0.477∠88.62° | 0.478∠88.62° | 0.477∠88.61° | 0.477∠88.61° | 0.477∠88.74° | ||||||
0.95 | 5.270∠174.8° | 0.702∠137.15° | 0.484∠101.09° | 0.477∠89.87° | 0.477∠89.31° | 0.477∠88.74° | ||||||
0.90 | 11.090∠177.53° | 1.190∠156.52° | 0.521∠116.53° | 0.477∠91.27° | 0.477∠90.05° | 0.477∠88.73° | ||||||
0.85 | 17.610∠178.44° | 1.820∠164.76° | 0.586∠125.55° | 0.477∠92.82° | 0.477∠90.93° | 0.476∠88.73° | ||||||
0.80 | 24.950∠178.9° | 2.533∠169.13° | 0.682∠135.63° | 0.477∠94.56° | 0.477∠91.78° | 0.477∠88.73° |
表 7 线路参数不对称配电网在不同接地故障电阻下的系统零序等值导纳(不接地)
Table 7 System zero sequence equivalent admittance (ungrounded) of distribution network with asymmetric line parameters under different grounding fault resistances
调控系数 | 系统零序等值导纳/S | |||||||||||
10 Ω | 100 Ω | 500 Ω | 16 kΩ | 瞬时性故障 | ||||||||
1.00 | 0.477∠88.63° | 0.477∠88.62° | 0.478∠88.62° | 0.477∠88.61° | 0.477∠88.61° | 0.477∠88.74° | ||||||
0.95 | 5.270∠174.8° | 0.702∠137.15° | 0.484∠101.09° | 0.477∠89.87° | 0.477∠89.31° | 0.477∠88.74° | ||||||
0.90 | 11.090∠177.53° | 1.190∠156.52° | 0.521∠116.53° | 0.477∠91.27° | 0.477∠90.05° | 0.477∠88.73° | ||||||
0.85 | 17.610∠178.44° | 1.820∠164.76° | 0.586∠125.55° | 0.477∠92.82° | 0.477∠90.93° | 0.476∠88.73° | ||||||
0.80 | 24.950∠178.9° | 2.533∠169.13° | 0.682∠135.63° | 0.477∠94.56° | 0.477∠91.78° | 0.477∠88.73° |
调控系数 | 系统零序等值导纳/S | |||||||||||
10 Ω | 100 Ω | 500 Ω | 16 kΩ | 瞬时性故障 | ||||||||
1.00 | 0.026∠–66.81° | 0.026∠–66.79° | 0.026∠–66.80° | 0.026∠–66.80° | 0.026∠–66.80° | 0.026∠–66.81° | ||||||
0.95 | 5.240∠–178.73° | 0.516∠–177.23° | 0.097∠–165.51° | 0.024∠–89.97° | 0.025∠–74.36° | 0.026∠–66.80° | ||||||
0.90 | 11.080∠–179.07° | 1.100∠–178.7° | 0.212∠–173.42° | 0.030∠–101.7° | 0.025∠–81.48° | 0.026∠–66.77° | ||||||
0.85 | 18.110∠–179.54° | 1.750∠–179.2° | 0.327∠–175.01° | 0.037∠–126.5° | 0.024∠–90.72° | 0.027∠–66.75° | ||||||
0.80 | 24.940∠–179.94° | 2.480∠–179.53° | 0.489∠–177.13° | 0.045∠–148.3° | 0.025∠–101.2° | 0.027∠–66.70° |
表 8 线路参数不对称配电网在不同接地故障电阻下的系统零序等值导纳(经消弧线圈接地)
Table 8 System zero sequence equivalent admittance of distribution network with asymmetric line parameters under different grounding fault resistance (grounded by arc suppression coil)
调控系数 | 系统零序等值导纳/S | |||||||||||
10 Ω | 100 Ω | 500 Ω | 16 kΩ | 瞬时性故障 | ||||||||
1.00 | 0.026∠–66.81° | 0.026∠–66.79° | 0.026∠–66.80° | 0.026∠–66.80° | 0.026∠–66.80° | 0.026∠–66.81° | ||||||
0.95 | 5.240∠–178.73° | 0.516∠–177.23° | 0.097∠–165.51° | 0.024∠–89.97° | 0.025∠–74.36° | 0.026∠–66.80° | ||||||
0.90 | 11.080∠–179.07° | 1.100∠–178.7° | 0.212∠–173.42° | 0.030∠–101.7° | 0.025∠–81.48° | 0.026∠–66.77° | ||||||
0.85 | 18.110∠–179.54° | 1.750∠–179.2° | 0.327∠–175.01° | 0.037∠–126.5° | 0.024∠–90.72° | 0.027∠–66.75° | ||||||
0.80 | 24.940∠–179.94° | 2.480∠–179.53° | 0.489∠–177.13° | 0.045∠–148.3° | 0.025∠–101.2° | 0.027∠–66.70° |
1 | 王晓卫, 岳阳, 郭亮, 等. 注入电流分布特性辨识的配电网故障选线方法[J]. 中国电力, 2024, 57 (10): 78- 89. |
WANG Xiaowei, YUE Yang, GUO Liang, et al. Injection current distribution characteristics identification based distribution-level fault line selection[J]. Electric Power, 2024, 57 (10): 78- 89. | |
2 | 杨森, 陈天翔, 邵千秋, 等. 10 kV配电线路单相树线故障选相研究[J]. 电力系统保护与控制, 2024, 52 (18): 169- 178. |
YANG Sen, CHEN Tianxiang, SHAO Qiuqian, et al. Fault phase selection of a single-phase tree-line in a 10 kV distribution line[J]. Power System Protection and Control, 2024, 52 (18): 169- 178. | |
3 | 李铁成, 范辉, 张卫明, 等. 基于5G通信的有源配电网新能源送出线路纵联保护[J]. 中国电力, 2024, 57 (11): 139- 150. |
LI Tiecheng, FAN Hui, ZHANG Weiming, et al. Pilot protection of new energy transmission line in active distribution network based on 5G communication[J]. Electric Power, 2024, 57 (11): 139- 150. | |
4 | 潘姝慧, 白浩, 周长城, 等. 配电网新型消弧技术综述[J]. 供用电, 2022, 39 (2): 42- 47, 64. |
PAN Shuhui, BAI Hao, ZHOU Changcheng, et al. Review of novel arc-suppression technology in distribution network[J]. Distribution & Utilization, 2022, 39 (2): 42- 47, 64. | |
5 | 邵文权, 刘一欢, 程远, 等. 基于零序阻抗突变特征的谐振接地系统高阻接地故障选线方法[J]. 电力自动化设备, 2021, 41 (11): 120- 126. |
SHAO Wenquan, LIU Yihuan, CHENG Yuan, et al. Fault line selection method of grounding fault with high resistance in resonant grounding system based on intensive zero-sequence impedance characteristics[J]. Electric Power Automation Equipment, 2021, 41 (11): 120- 126. | |
6 | 刘宝稳, 王晨雨, 曾祥君, 等. 三相分布参数不对称配电线路接地故障检测与消弧技术综述[J]. 高电压技术, 2023, 49 (9): 3684- 3695. |
LIU Baowen, WANG Chenyu, ZENG Xiangjun, et al. Review on the single line-to-ground fault detection and arc suppression techniques of distribution lines with asymmetric three-phase distribution parameters[J]. High Voltage Engineering, 2023, 49 (9): 3684- 3695. | |
7 | 刘宝稳, 万子雄, 曾祥君, 等. 基于有源消弧暂态衰减信息的配电网接地故障跟踪检测方法[J]. 中国电机工程学报, 2024, 44 (2): 464- 475. |
LIU Baowen, WAN Zixiong, ZENG Xiangjun, et al. Ground fault tracking and detection of distribution network based on transient attenuation information of active arc-suppression process[J]. Proceedings of the CSEE, 2024, 44 (2): 464- 475. | |
8 | CHEN J C, PHUNG T, BLACKBURN T, et al. Detection of high impedance faults using current transformers for sensing and identification based on features extracted using wavelet transform[J]. IET Generation, Transmission & Distribution, 2016, 10(12): 2990–2998. |
9 |
COSTA F B, SOUZA B A, BRITO N S D, et al. Real-time detection of transients induced by high-impedance faults based on the boundary wavelet transform[J]. IEEE Transactions on Industry Applications, 2015, 51 (6): 5312- 5323.
DOI |
10 | 刘丰, 谢李为, 蔡军, 等. 基于信号频谱特性的配电网故障行波检测方法[J]. 电力系统保护与控制, 2024, 52 (9): 59- 69. |
LIU Feng, XIE Liwei, CAI Jun, et al. A fault traveling wave detection method based on signal spectral characteristics for a distribution network[J]. Power System Protection and Control, 2024, 52 (9): 59- 69. | |
11 | 梁睿, 靳征, 王崇林, 等. 行波时频复合分析的配电网故障定位研究[J]. 中国电机工程学报, 2013, 33 (28): 130- 136, 20. |
LIANG Rui, JIN Zheng, WANG Chonglin, et al. Research of fault location in distribution networks based on integration of travelling wave time and frequency analysis[J]. Proceedings of the CSEE, 2013, 33 (28): 130- 136, 20. | |
12 | 洪翠, 连淑婷, 黄晟, 等. 基于改进经验小波变换和改进多视角深度矩阵分解的直流配电网故障检测方案[J]. 电力自动化设备, 2022, 42 (6): 8- 15, 29. |
HONG Cui, LIAN Shuting, HUANG Sheng, et al. Fault detection scheme based on IEWT and IMDMF for DC distribution network[J]. Electric Power Automation Equipment, 2022, 42 (6): 8- 15, 29. | |
13 | 韦莉珊, 贾文超, 焦彦军. 基于导纳不对称原理的小电流接地系统选线方案[J]. 电力自动化设备, 2020, 40 (3): 162- 167. |
WEI Lishan, JIA Wenchao, JIAO Yanjun. Fault line selection scheme in small current grounding system based on admittance asymmetry principle[J]. Electric Power Automation Equipment, 2020, 40 (3): 162- 167. | |
14 | 赵军, 邓杰文, 胡晨旺, 等. 不对称电网单相接地故障中性点位移电压轨迹分析及应用[J]. 电力系统自动化, 2019, 43 (5): 159- 166. |
ZHAO Jun, DENG Jiewen, HU Chenwang, et al. Analysis and application of trajectory of neutral point displacement voltage during single-phase grounding fault in asymmetrical power grid[J]. Automation of Electric Power Systems, 2019, 43 (5): 159- 166. | |
15 | 曾祥君, 尹项根, 张哲, 等. 配电网接地故障负序电流分布及接地保护原理研究[J]. 中国电机工程学报, 2001, 21 (6): 84- 89. |
ZENG Xiangjun, YIN Xianggen, ZHANG Zhe, et al. Study for negative sequence current distributing and ground fault protection in middle voltage power systems[J]. Proceedings of the CSEE, 2001, 21 (6): 84- 89. | |
16 | 曾祥君, 王媛媛, 庞方亮, 等. 基于故障电阻测量的小电流接地系统保护方法[J]. 高电压技术, 2007, 33 (1): 26- 30. |
ZENG Xiangjun, WANG Yuanyuan, PANG Fangliang, et al. Grounding fault protection based on fault resistance measurment for ineffectively earthed distribution systems[J]. High Voltage Engineering, 2007, 33 (1): 26- 30. | |
17 | 何瑞江, 胡志坚, 王天一. 计及分布式电源注入谐波的谐振接地系统故障选线方法[J]. 电网技术, 2019, 43 (2): 670- 680. |
HE Ruijiang, HU Zhijian, WANG Tianyi. A fault line selection method for resonant grounding system considering injected harmonics of distributed generation[J]. Power System Technology, 2019, 43 (2): 670- 680. | |
18 |
张慧芬, 潘贞存, 桑在中. 基于注入法的小电流接地系统故障定位新方法[J]. 电力系统自动化, 2004, 28 (3): 64- 66.
DOI |
ZHANG Huifen, PAN Zhencun, SANG Zaizhong. Injecting current based method for fault location in neutral isolated power system[J]. Automation of Electric Power Systems, 2004, 28 (3): 64- 66.
DOI |
|
19 | 张宇, 陈乔夫, 程路, 等. 检测配电网电容电流及辨识高阻接地的新方法[J]. 电力系统自动化, 2008, 32 (8): 83- 87, 101. |
ZHANG Yu, CHEN Qiaofu, CHENG Lu, et al. Novel method for measuring capacitive current and distinguishing high-resistance grounding of distributing network[J]. Automation of Electric Power Systems, 2008, 32 (8): 83- 87, 101. | |
20 | 刘硕, 刘灏, 毕天姝, 等. 考虑高阻接地的配电网故障检测方法[J]. 电网技术, 2023, 47 (8): 3438- 3447. |
LIU Shuo, LIU Hao, BI Tianshu, et al. Fault detection of distribution network considering high impedance faults[J]. Power System Technology, 2023, 47 (8): 3438- 3447. | |
21 | 樊淑娴, 徐丙垠, 张清周. 注入方波信号的经消弧线圈接地系统故障选线方法[J]. 电力系统自动化, 2012, 36 (4): 91- 95. |
FAN Shuxian, XU Bingyin, ZHANG Qingzhou. A new method for fault line selection in distribution system with arc suppression coil grounding with square-wave signal injection[J]. Automation of Electric Power Systems, 2012, 36 (4): 91- 95. | |
22 | 刘映彤, 黄纯, 袁静泊, 等. 谐振接地系统两点同相接地故障暂态特征及选线[J]. 中国电力, 2022, 55 (10): 62- 70. |
LIU Yingtong, HUANG Chun, YUAN Jingbo, et al. Transient characteristics and line selection of two-point grounding faults on same phase in resonant grounding system[J]. Electric Power, 2022, 55 (10): 62- 70. | |
23 | 方毅, 薛永端, 宋华茂, 等. 谐振接地系统高阻接地故障暂态能量分析与选线[J]. 中国电机工程学报, 2018, 38 (19): 5636- 5645, 5921. |
FANG Yi, XUE Yongduan, SONG Huamao, et al. Transient energy analysis and faulty feeder identification method of high impedance fault in the resonant grounding system[J]. Proceedings of the CSEE, 2018, 38 (19): 5636- 5645, 5921. | |
24 | 符金伟, 史常凯, 尹惠, 等. 基于综合特征矩阵的配电网故障判别方法[J]. 中国电力, 2021, 54 (11): 125- 132. |
FU Jinwei, SHI Changkai, YIN Hui, et al. Distribution network fault type identification method based on feature-summarizing matrix[J]. Electric Power, 2021, 54 (11): 125- 132. | |
25 | 要焕年, 曹梅月. 电力系统谐振接地[M]. 2版. 北京: 中国电力出版社, 2009. |
[1] | 郑鹏, 韩鹏程, 王国栋, 娄颖. 中压配电线路断线高阻接地故障精细化诊断方法[J]. 中国电力, 2024, 57(4): 220-228. |
[2] | 郄朝辉, 崔晓丹, 李威, 刘福锁. 一种支撑电网故障感知与分析的全景录波平台[J]. 中国电力, 2018, 51(12): 88-94. |
[3] | 苗晓鹏, 文振江, 李晓波, 赵国栋. 基于零序电压定相比幅的消弧线圈调谐新方法[J]. 中国电力, 2014, 47(3): 116-119. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||