[1] 代贤忠, 王阳, 白翠粉, 等. 智能电网功能形态升级需求分析框架与模糊综合评价[J]. 中国电力, 2017, 50(6): 158–164 DAI Xianzhong, WANG Yang, BAI Cuifen, et al. Analysis framework and fuzzy comprehensive evaluation of smart grid function and form upgrade needs[J]. Electric Power, 2017, 50(6): 158–164 [2] 余贻鑫, 刘艳丽. 智能电网的挑战性问题[J]. 电力系统自动化, 2015, 39(2): 1–5 YU Yixin, LIU Yanli. Challenging issues of smart grid[J]. Automation of Electric Power Systems, 2015, 39(2): 1–5 [3] 黄晓莉, 李振杰, 张韬, 等. 新形势下能源发展需求与智能电网建设[J]. 中国电力, 2017, 50(9): 25–30 HUANG Xiaoli, LI Zhenjie, ZHANG Tao, et al. Study on the energy development demand and smart grid construction under new situation[J]. Electric Power, 2017, 50(9): 25–30 [4] GELLINGS C W. Evolving practice of demand-side management[J]. Journal of Modern Power Systems and Clean Energy, 2017, 5(1): 1–9. [5] YAN H G, LI B, CHEN S S, et al. Future evolution of automated demand response system in smart grid for low-carbon economy[J]. Journal of Modern Power Systems and Clean Energy, 2015, 3(1): 72–81. [6] HART G W. Nonintrusive appliance load monitoring[J]. Proceedings of the IEEE, 1992, 80(12): 1870–1891. [7] LIU C, AKINTAYO A, JIANG Z H, et al. Multivariate exploration of non-intrusive load monitoring via spatiotemporal pattern network[J]. Applied Energy, 2018, 211: 1106–1122. [8] HASSAN T, JAVED F, ARSHAD N. An empirical investigation of V-I trajectory based load signatures for non-intrusive load monitoring[J]. IEEE Transactions on Smart Grid, 2014, 5(2): 870–878. [9] 丘浩, 张炜, 彭博雅, 等. 基于YOLOv3的特定电力作业场景下的违规操作识别算法[J]. 电力科学与技术学报, 2021, 36(3): 195–202 QIU Hao, ZHANG Wei, PENG Boya, et al. Illegaloperation recognition algorithm based on YOLOv3 in specific power operation scenario[J]. Journal of Electric Power Science and Technology, 2021, 36(3): 195–202 [10] 杨立余, 陈昊, 黎明, 等. 非侵入式电力负荷多目标分解框架[J]. 电力系统保护与控制, 2020, 48(6): 100–107 YANG Liyu, CHEN Hao, LI Ming, et al. A framework for non-intrusive load monitoring using multi-objective evolutionary algorithms[J]. Power System Protection and Control, 2020, 48(6): 100–107 [11] 杨云瑞, 黄宇魁, 陈文浩. 基于V-I轨迹特征的非侵入式负荷监测算法[J]. 计算机与数字工程, 2020, 48(10): 2353–2358 YANG Yunrui, HUANG Yukui, CHEN Wenhao. Non-intrusive load monitoring algorithm based on V-I trajectory feature[J]. Computer & Digital Engineering, 2020, 48(10): 2353–2358 [12] 李如意, 张鹏, 刘永光, 等. 基于随机森林的非侵入式家庭负荷辨识方法[J]. 电测与仪表, 2021, 58(4): 9–16 LI Ruyi, ZHANG Peng, LIU Yongguang, et al. Non-intrusive household load identification method based on random forest[J]. Electrical Measurement & Instrumentation, 2021, 58(4): 9–16 [13] 刘兴杰, 曹美晗, 许月娟. 基于改进鸡群算法的非侵入式负荷监测[J]. 电力自动化设备, 2018, 38(5): 235–240 LIU Xingjie, CAO Meihan, XU Yuejuan. Non-intrusive load monitoring based on improved chicken swarm optimization algorithm[J]. Electric Power Automation Equipment, 2018, 38(5): 235–240 [14] 牛卢璐, 贾宏杰. 一种适用于非侵入式负荷监测的暂态事件检测算法[J]. 电力系统自动化, 2011, 35(9): 30–35 NIU Lulu, JIA Hongjie. Transient event detection algorithm for non-intrusive load monitoring[J]. Automation of Electric Power Systems, 2011, 35(9): 30–35 [15] COX R, LEEB S B, SHAW S R, et al. Transient event detection for nonintrusive load monitoring and demand side management using voltage distortion[C]//Twenty-First Annual IEEE Applied Power Electronics Conference and Exposition, 2006. APEC '06. Dallas, TX, USA. IEEE, 2006: 7. [16] 赵文清, 张诗满, 李刚. 基于聚类和关联分析的居民用户非侵入式负荷分解[J]. 电力自动化设备, 2020, 40(6): 8–19 ZHAO Wenqing, ZHANG Shiman, LI Gang. Non-intrusive load decomposition of residential users based on cluster and association analysis[J]. Electric Power Automation Equipment, 2020, 40(6): 8–19 [17] 祁兵, 董超, 武昕, 等. 基于DTW算法与稳态电流波形的非侵入式负荷辨识方法[J]. 电力系统自动化, 2018, 42(3): 70–76 QI Bing, DONG Chao, WU Xin, et al. Non-intrusive load identification method based on DTW algorithm and steady-state current waveform[J]. Automation of Electric Power Systems, 2018, 42(3): 70–76 [18] HOLMEGAARD E, BAUN KJAERGAARD M. NILM in an industrial setting: a load characterization and algorithm evaluation[C]//2016 IEEE International Conference on Smart Computing. St. Louis, MO, USA. IEEE, 2016: 1–8. [19] YI S H, YIN X D, DIAO Y L, et al. A new event-detection method based on composite windows in NILM for industrial settings[C]//2019 IEEE Sustainable Power and Energy Conference (iSPEC). Beijing, China. IEEE, 2019: 2768–2771. [20] 徐春华, 陈克绪, 马建, 等. 基于深度置信网络的电力负荷识别[J]. 电工技术学报, 2019, 34(19): 4135–4142 XU Chunhua, CHEN Kexu, MA Jian, et al. Recognition of power loads based on deep belief network[J]. Transactions of China Electrotechnical Society, 2019, 34(19): 4135–4142 [21] 武昕, 于金莹, 彭林, 等. 基于用户边缘侧事件解析的工业电力负荷非侵入式感知辨识[J]. 电力系统自动化, 2021, 45(4): 29–37 WU Xin, YU Jinying, PENG Lin, et al. Non-intrusive perception and identification of industrial power load based on analysis of event on user edge[J]. Automation of Electric Power Systems, 2021, 45(4): 29–37 [22] 曹正凤, 谢邦昌, 纪宏. 一种随机森林的混合算法[J]. 统计与决策, 2014(4): 7–9 [23] 黄青平. 基于随机森林的电力系统短期负荷预测研究[D]. 北京: 华北电力大学(北京), 2018. HUANG Qingping. Research on short term load forecasting of power system based on random forest[D]. Beijing: North China Electric Power University, 2018. [24] 周剑. 基于负荷投切触发的非侵入式家庭负荷识别方法的研究[D]. 广州: 广东工业大学, 2020. ZHOU Jian. Study on non-invasive domestic load identification method based on load switching[D]. Guangzhou: Guangdong University of Technology, 2020. [25] 秦领. 基于小波变换和随机森林的非侵入式住宅用电负荷识别研究[D]. 重庆: 重庆大学, 2018. QIN Ling. Research on non-intrusive household load identification based on wavelet transform and random forest[D]. Chongqing: Chongqing University, 2018.
|