[1] 吴晓文, 周年光, 彭继文, 等. 电力变压器噪声特性与相关因素分析[J]. 电力科学与技术学报, 2018, 33(3): 81–85,146 WU Xiaowen, ZHOU Nianguang, PENG Jiwen, et al. Noise characteristic and relevant factors analysis of power transformers[J]. Journal of Electric Power Science and Technology, 2018, 33(3): 81–85,146 [2] 王丰华, 王邵菁, 陈颂, 等. 基于改进MFCC和VQ的变压器声纹识别模型[J]. 中国电机工程学报, 2017, 37(5): 1535–1543 WANG Fenghua, WANG Shaojing, CHEN Song, et al. Voiceprint recognition model of power transformers based on improved MFCC and VQ[J]. Proceedings of the CSEE, 2017, 37(5): 1535–1543 [3] ZHAO S T, PAN L L, LI B S. The study of transformer fault acoustic signal processing based on HHT and wavelet contour[C]//2009 WRI Global Congress on Intelligent Systems. Xiamen, China. IEEE, 2009: 262–266. [4] 叶中付, 朱媛媛, 贾翔宇. 基于字典学习和稀疏表示的单通道语音增强算法综述[J]. 应用声学, 2019, 38(4): 645–652 YE Zhongfu, ZHU Yuanyuan, JIA Xiangyu. Review for speech enhancement algorithms based on dictionary learning and sparse representation[J]. Journal of Applied Acoustics, 2019, 38(4): 645–652 [5] 赵妙颖, 许刚. 基于经验小波变换的变压器振动信号特征提取[J]. 电力系统自动化, 2017, 41(20): 63–69,91 ZHAO Miaoying, XU Gang. Feature extraction for vibration signals of power transformer based on empirical wavelet transform[J]. Automation of Electric Power Systems, 2017, 41(20): 63–69,91 [6] 李中, 张卫华, 孙娜, 等. 基于广义回归神经网络的变压器表面振动基频幅值计算[J]. 高电压技术, 2017, 43(7): 2287–2293 LI Zhong, ZHANG Weihua, SUN Na, et al. Calculation of vibration fundamental frequency amplitude of transformer surface based on generalized regression neural network[J]. High Voltage Engineering, 2017, 43(7): 2287–2293 [7] 简金宝, 王媛媛, 曾祥君, 等. 基于系统聚类分析的馈线接地保护[J]. 电力系统自动化, 2013, 37(5): 111–116 JIAN Jinbao, WANG Yuanyuan, ZENG Xiangjun, et al. Earth fault feeder detection based on hierarchical clustering analysis[J]. Automation of Electric Power Systems, 2013, 37(5): 111–116 [8] 陈沛龙, 刘君, 马晓红, 等. 基于振动信号统计特性的变压器绕组状态监测[J]. 电工电能新技术, 2018, 37(9): 74–80 CHEN Peilong, LIU Jun, MA Xiaohong, et al. Condition monitoring of transformer windings based on statistics feature of vibration signal[J]. Advanced Technology of Electrical Engineering and Energy, 2018, 37(9): 74–80 [9] AZIZ S A A, NUAWI M Z, MOHD NOR M J, et al. Study of noise, vibration and harshness (NVH) for Malaysian army (MA) 3-tonne trucks[J]. Applied Mechanics and Materials, 2013, 471: 74–80. [10] 徐国华, 史勇杰, 招启军, 等. 直升机旋翼气动噪声的研究新进展[J]. 航空学报, 2017, 38(7): 520991 XU Guohua, SHI Yongjie, ZHAO Qijun, et al. New research progress in helicopter rotor aerodynamic noise[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(7): 520991 [11] 曹浩, 吴晓文, 卢铃, 等. 基于波束形成声成像技术的某±800 kV换流站噪声源识别[J]. 高压电器, 2019, 55(11): 171–176 CAO Hao, WU Xiaowen, LU Ling, et al. Noise source identification for a ±800 kV converter station based on beam-forming acoustic imaging technology[J]. High Voltage Apparatus, 2019, 55(11): 171–176 [12] 余长厅, 黎大健, 陈梁远, 等. 基于声纹及振动的变压器故障诊断技术研究[J]. 高压电器, 2019, 55(11): 248–254 YU Changting, LI Dajian, CHEN Liangyuan, et al. Transformer fault diagnosis technique based on voiceprint and vibration[J]. High Voltage Apparatus, 2019, 55(11): 248–254 [13] GOCKENBACH E, WERLE P, BORSI H. Monitoring and diagnostic systems for dry type transformers[C]//ICSD'01. Proceedings of the 20001 IEEE 7 th International Conference on Solid Dielectrics (Cat. No. 01 CH37117). Eindhoven, Netherlands. IEEE, 2001: 291–294. [14] CHRISTENSEN J J, HALD J. Improvements of cross spectral beamforming[J]. Signals, 2003. [15] CHRISTANSEN J, HALD J. Beamforming[R]. B&K Technical Review, 2004(1): 1–31. [16] HUANG X, BAI L, VINOGRADOV I, et al. Adaptive beamforming for array signal processing in aeroacoustic measurements[J]. The Journal of the Acoustical Society of America, 2012, 131(3): 2152–2161. [17] BROOKS T F, HUMPHREYS W M. A deconvolution approach for the mapping of acoustic sources (DAMAS) determined from phased microphone arrays[J]. Journal of Sound and Vibration, 2006, 294(4/5): 856–879. [18] 谭贵生, 曹生现, 赵波, 等. 基于关联规则与变权重系数的变压器状态综合评估方法[J]. 电力系统保护与控制, 2020, 48(1): 88-95. TAN Guisheng, CAO Shengxian, ZHAO Bo, et al. An assessment of power transformers based on association rules and variable weight coefficients[J]. Power System Protection and Control, 2020, 48(1): 88-95. [19] 康兵, 杨勇, 李振兴, 等. 基于实际运行数据的配电变压器故障原因多维度分析[J]. 智慧电力, 2019, 47(3): 66-70, 116. KANG Bing, YANG Yong, LI Zhenxing, et al. Multidimensional analysis of causes of distribution transformer fault based on actual operation data[J]. Smart Power, 2019, 47(3): 66-70, 116. [20] 党东升, 张树永, 葛鹏江, 等. 基于改进量子粒子群优化支持向量机的变压器故障诊断方法[J]. 电力科学与技术学报, 2019, 34(3): 108-113. DANG Dongsheng, ZHANG Shuyong, GE Pengjiang, et al. Transformer fault diagnosis method based on support vector machine optimized by improved quantum-behaved particle swarm optimization[J]. Journal of Electric Power Science and Technology, 2019, 34(3): 108-113.
|