中国电力 ›› 2016, Vol. 49 ›› Issue (3): 183-187.DOI: 10.11930/j.issn.1004-9649.2016.03.183.05

• 新能源 • 上一篇    下一篇

基于QPSO-LSSVM的风电场超短期功率预测

张涛,孙晓伟,史苏怡,李振兴   

  1. 三峡大学 电气与新能源学院,湖北 宜昌 443002
  • 收稿日期:2015-06-28 修回日期:2016-04-08 出版日期:2016-03-20 发布日期:2016-04-08
  • 作者简介:张涛(1972—),男,湖北宜昌人,副教授,从事新能源发电及并网技术研究。E-mail: 493268532@qq.com

Ultra-Short-Term Wind Power Forecasting Based on QPSO-LSSVM

ZHANG Tao, SUN Xiaowei, SHI Suyi, LI Zhenxing   

  1. College of Electrical Engineering and New Energy, China Three Gorges University, Yichang 443002, China
  • Received:2015-06-28 Revised:2016-04-08 Online:2016-03-20 Published:2016-04-08

摘要: 准确预测风电场的发电功率,有利于电网的经济和安全调度。为提高风电场超短期功率预测的精度,建立了基于最小二乘支持向量机(LSSVM)的风电场超短期功率预测模型,并采用量子粒子群算法(QPSO)对LSSVM中影响回归性能的参数进行优化。通过对福建某实际风电场超短期功率预测的应用表明,与BP神经网络和QPSO-LSSVM的预测结果相比,QPSO-LSSVM预测模型多种误差指标均较小,具有较高的预测精度和鲁棒性,是一种有效的风电场超短期功率预测方法。

关键词: 风功率预测, 量子粒子群, 最小二乘支持向量机, BP神经网络

Abstract: An accurate forecast of wind power is beneficial to the economic and security dispatch of the power grid. To improve the accuracy of ultra-short-term wind power forecasting, this paper applies the quantum particle swarm optimization(QPSO) to optimize the parameters affecting the regression performance of the least squares support vector machine (LSSVM) in the QPSO-LSSVM model. Based on actual application in a wind farm, it is shown that the QPSO-LSSVM forecasting model has smaller errors on a variety of indicators than the BP neural network based model and PSO-LSSVM model. It has high forecasting accuracy and is robustness, and can be an effective ultra-short-term wind power forecasting methodology.

Key words: wind power forecast, quantum particle swarm, least squares support vector machine (LSSVM), BP neural network

中图分类号: