中国电力 ›› 2025, Vol. 58 ›› Issue (12): 155-164.DOI: 10.11930/j.issn.1004-9649.202507060

• 新型电网 • 上一篇    

考虑气象敏感性的相似日用电量预测

郑宽昀1(), 陈一平1, 单帅杰2,3(), 刘秀2, 于一潇4   

  1. 1. 国电南瑞南京控制系统有限公司,江苏 南京 210000
    2. 山东大学 电气工程学院,山东 济南 250061
    3. 山东省数字智慧能源创新重点实验室,山东 济南 250100
    4. 山东大学 高等技术研究院,山东 济南 250061
  • 收稿日期:2025-07-21 修回日期:2025-09-10 发布日期:2025-12-27 出版日期:2025-12-28
  • 作者简介:
    郑宽昀(1982),男,高级工程师,从事电力自动化、电力市场、用电信息采集研究,E-mail:307909019@qq.com
    单帅杰(1997),男,通信作者,博士研究生,从事用户侧电力电量预测、电力系统经济运行研究,E-mail:shanshuaijie@126.com
  • 基金资助:
    国家自然科学基金资助项目(52177095)。

Similar-Day Electricity Consumption Prediction Considering Meteorological Sensitivity

ZHENG Kuanyun1(), CHEN Yiping1, SHAN Shuaijie2,3(), LIU Xiu2, YU Yixiao4   

  1. 1. NARI-TECH Nanjing Control Systems Co., Ltd., Nanjing 210000, China
    2. School of Electrical Engineering, Shandong University, Jinan 250061, China
    3. Shandong Key Laboratory of Digital Smart Energy, Jinan 250100, China
    4. Institute for Advanced Technology, Shandong University, Jinan 250061, China
  • Received:2025-07-21 Revised:2025-09-10 Online:2025-12-27 Published:2025-12-28
  • Supported by:
    This work is supported by National Natural Science Foundation of China (No.52177095).

摘要:

精准用电量预测能够为电力供应提供技术支撑,为实现高精准预测,提出了一种考虑气象敏感性的相似日用电量预测方法,通过深入挖掘用电量的时序波动特性与气象敏感性,结合关键气象因素,提高相似日匹配度,进而提高预测精度。首先,通过皮尔逊相关系数分析各气象因素与用电量的线性关联程度,再经P值检验,综合二者结果筛选出影响用电量的关键气象因素,并利用K-means聚类算法对与用电量相关系数最高的温度数据进行分类,将历史日划分为高温日、适温日2类,建立相似日类型框架。其次,在相同温度类别内,通过灰色关联分析计算待测日与历史日各气象因素之间的灰色关联度,并结合欧氏距离筛选出与待测日相似的历史日数据,深入挖掘用电量的时序波动与气象敏感性特征。然后,基于相似日数据构建组合预测模型,综合考虑气象因素与时间序列特性,提高预测精度。最后,通过山东某地某小区的用电数据情况进行验证,结果表明:所提方法在解决用电量预测问题方面具有显著优势。

关键词: 用电量预测, K-means聚类, 灰色关联分析, 相似日, 组合预测

Abstract:

Accurate electricity consumption prediction can provide technical support for the precise supply of electricity. To achieve high-precision prediction, a method based on meteorologically similar days for electricity consumption prediction is proposed. By deeply exploring the temporal fluctuation characteristics of electricity consumption and the meteorological sensitivity, and combining key meteorological factors, the matching degree of similar days is improved, thereby enhancing the prediction accuracy. Firstly, the linear correlation degree between each meteorological factor and electricity consumption is analyzed through Pearson correlation coefficient. Then, through P-value test, the key meteorological factors affecting electricity consumption are screened out by integrating the results of both. And the temperature data that exhibits the highest correlation with electricity consumption is classified using the K-means clustering algorithm. Historical days are categorized into two types: high-temperature days and moderate-temperature days, thereby establishing a similar-day typology framework. Secondly, within the same temperature category, the grey relational analysis is used to calculate the grey correlation degree between the meteorological factors of the target day and those of the historical days. By integrating Euclidean distance, the historical days most similar to the target day are screened out to deeply explore the temporal fluctuations and meteorological sensitivity characteristics of electricity consumption. Subsequently, a combined prediction model is constructed based on the similar-day data, comprehensively considering both meteorological factors and time-series characteristics, thereby enhancing prediction accuracy. Finally, the proposed method is validated using the electricity consumption data from a residential district in a certain area of Shandong Province. The results demonstrate that the proposed method has significant advantages in addressing the challenges of electricity consumption prediction.

Key words: electricity consumption prediction, k-means clustering, grey relational analysis, similar day, combinatorial forecasting


AI


AI小编
您好!我是《中国电力》AI小编,有什么可以帮您的吗?