中国电力 ›› 2023, Vol. 56 ›› Issue (2): 143-149.DOI: 10.11930/j.issn.1004-9649.202108059

• 新能源 • 上一篇    下一篇

考虑天气类型和相似日的IWPA-LSSVM光伏发电功率预测

徐一伦1, 张彬桥1, 黄婧2, 谢枭2, 王若昕2, 沈丹青2, 何丽娜2, 杨凯帆2   

  1. 1. 三峡大学 电气与新能源学院,湖北 宜昌 443002;
    2. 国网湖北省电力有限公司荆门供电公司,湖北 荆门 448000
  • 收稿日期:2021-08-19 修回日期:2022-12-05 发布日期:2023-02-23
  • 作者简介:徐一伦(1993—),男,硕士研究生,从事电力系统运行与控制研究,E-mail:224182647@qq.com;张彬桥(1972—),男,博士,通信作者,从事电力系统运行与控制研究,E-mail:379132647@qq.com
  • 基金资助:
    国家自然科学青年基金资助项目(52007102)

Forecast of Photovoltaic Power Based on IWPA-LSSVM Considering Weather Types and Similar Days

XU Yilun1, ZHANG Binqiao1, HUANG Jing2, XIE Xiao2, WANG Ruoxin2, SHEN Danqing2, HE Lina2, YANG Kaifan2   

  1. 1. College of Electrical Engineering and New Energy, China Three Gorges University, Yichang 443002, China;
    2. Jingmen Power Supply Company, State Grid Hubei Electric Power Co., Ltd., Jingmen 448000, China
  • Received:2021-08-19 Revised:2022-12-05 Published:2023-02-23
  • Supported by:
    This work is supported by National Natural Science Foundation of China Youth Fund Project (No.52007102).

摘要: 为了提高光伏发电功率预测精度,根据不同天气类型下光伏输出功率特点,确定光伏发电功率预测模型的输入量。针对狼群算法(wolf pack algorithm,WPA)缺陷,对狼群游走位置和奔袭步长进行改进,得到改进狼群算法(improved wolf pack algorithm,IWPA),并通过IWPA对最小二乘支持向量机(least squares support vector machine,lSSVM)进行优化,建立了考虑天气类型和相似日的IWPA-LSSVM光伏发电功率预测模型。采用不同天气类型下的光伏发电功率数据进行仿真,结果表明:无论是晴天、多云还是阴雨天气,所提方法预测精度更高,回归拟合时的误差波动更小。

关键词: 天气类型, 相似日, 光伏发电功率, 最小二乘支持向量机

Abstract: In order to improve the prediction accuracy of photovoltaic power, the input of the photovoltaic power prediction model is determined according to the characteristics of photovoltaic output power under different weather types. Aiming at the defects of the wolf pack algorithm (WPA), an improved wolf pack algorithm (IWPA) was obtained by improving the walking position and running step of the wolf pack. The least squares support vector machine (lSSVM) was optimized by IWPA, and an IWPA-LSSVM based photovoltaic power prediction model was established considering weather types and similar days. The photovoltaic power generation data under different weather types were used for simulation, and the simulation results show that the proposed method has a higher prediction accuracy and the error fluctuation of regression fitting is smaller whether the weather is sunny, cloudy or rainy.

Key words: weather type, similar day, photovoltaic power, least squares support vector machine