[1] 郭艳飞, 程林, 李洪涛, 等. 基于支持向量机和互联网信息修正的空间负荷预测方法[J]. 中国电力, 2019, 52(4): 80-88 GUO Yanfei, CHENG Lin, LI Hongtao, et al. Spatial load forecasting method based on support vector machine and internet information correction[J]. Electric Power, 2019, 52(4): 80-88 [2] DUDEK G. Pattern-based local linear regression models for short-term load forecasting[J]. Electric Power Systems Research, 2016: 139-147. [3] GOIA A, MAY C, FUSAI G. Functional clustering and linear regression for peak load forecasting[J]. International Journal of Forecasting, 2010, 26(4): 700-711. [4] 艾欣, 周志宇, 魏妍萍, 等. 基于自回归积分滑动平均模型的可转移负荷竞价策略[J]. 电力系统自动化, 2017, 41(20): 26-31 AI Xin, ZHOU Zhiyu, WEI Yanping, et al. Bidding strategy for time-shiftable loads based on autoregressive integrated moving average model[J]. Automation of Electric Power Systems, 2017, 41(20): 26-31 [5] 于群, 张铮, 屈玉清, 等. 基于ARMA-GABP组合模型的电网大停电事故损失负荷预测[J]. 中国电力, 2018, 51(11): 38-44 YU Qun, ZHANG Zheng, QU Yuqing, et al. Power loss prediction of large blackouts in power grid based on ARMA-GABP combined model[J]. Electric Power, 2018, 51(11): 38-44 [6] ABBAS F, FENG D, HABIB S, et al. Short term residential load forecasting: an improved optimal nonlinear auto regressive (NARX) method with exponential weight decay function[J]. Electronics, 2018, 7(12): 432. [7] 刘雨竹, 徐楠. 基于混沌时间序列的IGA- WLSSVR短期负荷预测模型[J/OL]. 控制工程: 1-6[2020-02-07]. https://doi.org/10.14107/j.cnki.kzgc.20190495. LIU Yuzhu, XU Nan. Short-term load forecasting model using IGA-WLSSVR based on chaotic time series[J/OL]. Control Engineering of China: 1-6[2020-02-07]. https://doi.org/10.14107/j.cnki.kzgc.20190495. [8] BALIYAN A, GAURAV K, MISHRA S K. A review of short term load forecasting using artificial neural network models[J]. Procedia Comouter Science, 2015, 48: 121-125. [9] BARBULESCU C, KILYENI S, DEACU A, et al. Artificial neural network based monthly load curves forecasting[C]//2016 IEEE 11th International Symposium on Applied Computational Intelligence and Informatics (SACI). Timisoara, Romania. IEEE, 2016: 237-242. [10] 林芳, 林焱, 吕宪龙, 等. 基于均衡KNN算法的电力负荷短期并行预测[J]. 中国电力, 2018, 51(10): 88-94, 102 LIN Fang, LIN Yan, LV Xianlong, et al. Short-term parallel power load forecasting based on balanced KNN[J]. Electric Power, 2018, 51(10): 88-94, 102 [11] BIANCHI F M, MAIORINO E, KAMPFFMEYER M C, et al. Recurrent neural networks for short-term load forecasting[M]. Cham: Springer International Publishing, 2017. [12] QING X Y, NIU Y G. Hourly day-ahead solar irradiance prediction using weather forecasts by LSTM[J]. Energy, 2018, 148: 461-468. [13] 张宇帆, 艾芊, 林琳, 等. 基于深度长短时记忆网络的区域级超短期负荷预测方法[J]. 电网技术, 2019, 43(6): 29-37 ZHANG Yufan, AI Qian, LIN Lin, et al. A very short-term load forecasting method based on Deep LSTM RNN at zone level[J]. Power System Technology, 2019, 43(6): 29-37 [14] 王增平, 赵兵, 纪维佳, 等. 基于GRU-NN模型的短期负荷预测方法[J]. 电力系统自动化, 2019, 43(5): 86-95 WANG Zengping, ZHAO Bing, JI Weijia, et al. Short-term load forecasting method based on GRU-NN model[J]. Automation of Electric Power Systems, 2019, 43(5): 86-95 [15] 庄家懿, 杨国华, 郑豪丰, 等. 并行多模型融合的混合神经网络超短期负荷预测[J]. 电力建设, 2020, 41(10): 1-8 ZHUANG Jiayi, YANG Guohua, ZHENG Haofeng, et al. Ultra-short-term load forecasting using hybrid neural network based on parallel multi-model combination[J]. Electric Power Construction, 2020, 41(10): 1-8 [16] 陈振宇, 刘金波, 李晨, 等. 基于LSTM与XGBoost组合模型的超短期电力负荷预测[J]. 电网技术, 2020, 44(2): 614-620 CHEN Zhenyu, LIU Jinbo, LI Chen, et al. Ultra short-term power load forecasting based on combined LSTM-XGBoost model[J]. Power System Technology, 2020, 44(2): 614-620 [17] CHEN T, GUESTRIN C. Xgboost: a scalable tree boosting system[C]//Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining. 2016: 785-794. [18] CHEN T, HE T, BENESTY M, et al. Xgboost: extreme gradient boosting[J]. R package version 0.4-2, 2015: 1-4. [19] LLOYD J R. GEFCom2012 hierarchical load forecasting: Gradient boosting machines and Gaussian processes[J]. International Journal of Forecasting, 2014, 30(2): 369-374. [20] ALMALAQ A, EDWARDS G. A review of deep learning methods applied on load forecasting[C]//2017 16th IEEE international conference on machine learning and applications (ICMLA). IEEE, 2017: 511-516. [21] ABADI Martín, BARHAM P, CHEN J M, et al. TensorFlow: a system for large-scale machine learning[C]// Proceedings of the 12th USENIX conference on Operating Systems Design and Implementation (OSDI'16). USENIX Association, Berkeley, CA, USA, 2016: 265-283. [22] GOLDBERG Y. Neural network methods for natural language processing[J]. Synthesis Lectures on Human Language Technologies, 2017, 10(1): 1-309. [23] HUANG C J, KUO P H. A deep cnn-lstm model for particulate matter (PM2.5) forecasting in smart cities[J]. Sensors, 2018, 18(7): 2220. [24] GRAVES, A. MOHAMED A R, HINTON G. Speech recognition with deep recurrent neural networks[C]//2013 IEEE International Conference on Acoustics, Speech and Signal Processing, Vancouver, BC, Canada. IEEE, 2013: 6645-6649. [25] 魏延, 曾绍华, 王勇, 等. 基于大训练样本集的ε-SVR改进算法研究[J]. 计算机仿真, 2010, 27(10): 352-356 WEI Yan, ZENG Shaohua, WANG Yong, et al. An improved algorithm of ε-SVR based on large-scale training sample set[J]. Computer Simulation, 2010, 27(10): 352-356 [26] LEE C W, LIN B Y. Applications of the chaotic quantum genetic algorithm with support vector regression in load forecasting[J]. Energies, 2017, 10(11): 1832. |