中国电力 ›› 2020, Vol. 53 ›› Issue (4): 105-113.DOI: 10.11930/j.issn.1004-9649.201908140

• 电网 • 上一篇    下一篇

基于XGBoost算法的配网台区低压跳闸概率预测

吴琼, 余文铖, 洪海生, 喻蕾, 段炼, 尚明远, 刘哲   

  1. 广州供电局有限公司,广东 广州 510006
  • 收稿日期:2019-08-23 修回日期:2019-10-11 发布日期:2020-04-05
  • 作者简介:吴琼(1972-),女,硕士,高级工程师,从事企业运营监控、企业资产全生命周期管理研究,E-mail:wuqiong@163.com;余文铖(1988-),男,助理工程师,从事企业运营监控、变电运行管理研究,E-mail:270574289@qq.com;洪海生(1984-),男,硕士,工程师,从事企业运营监控、基建工程管理及配网自动化研究,E-mail:honeyhycere@gmail.com;刘哲(1994-),男,通信作者,硕士,从事电力大数据、智能算法在电力系统的应用研究,E-mail:459575404@qq.com

Probability Prediction of Low-voltage Tripping Failures in Distribution Transformer Station Areas Based on XGBoost Algorithm

WU Qiong, YU Wencheng, HONG Haisheng, YU Lei, DUAN Lian, SHANG Mingyuan, LIU Zhe   

  1. Guangzhou Power Supply Bureau Co., Ltd., Guangzhou 510006, China
  • Received:2019-08-23 Revised:2019-10-11 Published:2020-04-05

摘要: 针对配网台区在夏季频繁出现低压跳闸故障的问题,提出基于机器学习的台区低压跳闸预警模型。首先,采用孤立森林和改进的合成少数类过采样技术(synthetic minority oversampling technique-nominal continuous,SMOTE-NC)算法的组合方法进行数据处理,在实现离群值分离的基础上,对包含多种数值类型的故障样本进行过采样,以解决样本不平衡问题。其次,利用优化的数据集训练极端梯度提升算法(extreme gradient boosting,XGBoost)分类器模型,对目标台区的低压跳闸故障概率进行预测。最后,以广州某地区的实测数据对算法的有效性进行验证,结果显示所提模型具有良好的应用效果。

关键词: 配网台区, 低压跳闸, 机器学习, 不平衡数据集, XGBoost

Abstract: In view of the frequent low-voltage tripping faults in the distribution transformer station areas during summer season, a machine learning-based warning model is proposed for low-voltage tripping in this paper. Firstly, a combination method based on isolated forest and synthetic minority oversampling technique-nominal continuous (SMOTE-NC) algorithm is proposed in data pre-processing phase. The aim of this combination method is to oversample the representative trip fault samples to adjust imbalance rate of dataset based on outlier separation. Secondly, the extreme gradient boosting (XGBoost) classifier model is trained using the optimized data sets to predict the probability of low-voltage tripping faults in the target station area. Finally, the proposed algorithm is validated by the measured data in an area of Guangzhou, and the results show it has good application effects.

Key words: distribution transformer station area, low-voltage tripping fault, machine learning, imbalanced dataset, XGBoost