[1] 冷华, 童莹, 李欣然, 等. 配电网运行状态综合评估方法研究[J]. 电力系统保护与控制, 2017, 45(1): 53–59 LENG Hua, TONG Ying, LI Xinran, et al. Comprehensive evaluation method research of the operation state in distributed network[J]. Power System Protection and Control, 2017, 45(1): 53–59 [2] 李博, 高志远. 人工智能技术在智能电网中的应用分析和展望[J]. 中国电力, 2017, 50(12): 136–140 LI Bo, GAO Zhiyuan. Analysis and prospect on the application of artificial intelligence technologies in smart grid[J]. Electric Power, 2017, 50(12): 136–140 [3] 余贻鑫. 智能电网实施的紧迫性和长期性[J]. 电力系统保护与控制, 2019, 47(17): 1–5 YU Yixin. Urgency and long-term nature of smart grid implementation[J]. Power System Protection and Control, 2019, 47(17): 1–5 [4] 王鹏, 陈旦, 周霞. 中国2017年度供电可靠性现状分析与展望[J]. 中国电力, 2018, 51(8): 1–9, 138 WANG Peng, CHEN Dan, ZHOU Xia. Analysis and prospect of power supply reliability in China in 2017[J]. Electric Power, 2018, 51(8): 1–9, 138 [5] 贺建章, 王海波, 季知祥, 等. 面向智能电网的配电变压器重过载影响因素分析[J]. 电网技术, 2017, 41(1): 279–284 HE Jianzhang, WANG Haibo, JI Zhixiang, et al. Analysis of factors affecting distribution transformer overload in smart grid[J]. Power System Technology, 2017, 41(1): 279–284 [6] 贺建章, 王海波, 季知祥, 等. 基于随机森林理论的配电变压器重过载预测[J]. 电网技术, 2017, 41(8): 2593–2597 HE Jianzhang, WANG Haibo, JI Zhixiang, et al. Heavy overload forecasting of distribution transformers based on random forest theory[J]. Power System Technology, 2017, 41(8): 2593–2597 [7] 张世良. 大数据背景下基于信赖域Logistic模型的短期配变重过载预警研究[C]// 中国电力科学研究院有限公司.第二届智能电网会议论文集. 北京: 国网电投 (北京) 科技中心, 2018: 315−322. [8] 史常凯, 闫文棋, 张筱慧, 等. 基于BP网络和灰色模型的春节配变重过载预测[J]. 电力科学与技术学报, 2016, 31(3): 140–145 SHI Changkai, YAN Wenqi, ZHANG Xiaohui, et al. Heavy overload forecasting of distribution transformer during the spring festival based on BP network and grey model[J]. Journal of Electric Power Science and Technology, 2016, 31(3): 140–145 [9] 魏剑啸, 粟忠来, 杨波, 等. 配电台区无功功率及三相不平衡电容调节的研究[J]. 电力系统保护与控制, 2019, 47(16): 71–79 WEI Jianxiao, SU Zhonglai, YANG Bo, et al. Study on reactive power and three-phase unbalance regulated by capacitor in distribution network[J]. Power System Protection and Control, 2019, 47(16): 71–79 [10] 黄建明, 李晓明, 瞿合祚, 等. 考虑小波奇异信息与不平衡数据集的输电线路故障识别方法[J]. 中国电机工程学报, 2017, 37(11): 3099–3107, 3365 HUANG Jianming, LI Xiaoming, QU Hezuo, et al. Method for fault type identification of transmission line considering wavelet singular information and unbalanced dataset[J]. Proceedings of the CSEE, 2017, 37(11): 3099–3107, 3365 [11] 陈奎, 韦晓广, 陈景波, 等. 基于样本数据处理和ADABOOST的小电流接地故障选线[J]. 中国电机工程学报, 2014, 34(34): 6228–6237 CHEN Kui, WEI Xiaoguang, CHEN Jingbo, et al. Fault line detection using sampled data processing and ADABOOST for small current grounding system[J]. Proceedings of the CSEE, 2014, 34(34): 6228–6237 [12] 陈振, 肖先勇, 李长松, 等. 基于代价敏感极端学习机的电力系统暂态稳定评估方法[J]. 电力自动化设备, 2016, 36(2): 118–123 CHEN Zhen, XIAO Xianyong, LI Changsong, et al. Power system transient stability assessment based on cost-sensitive extreme learning machine[J]. Electric Power Automation Equipment, 2016, 36(2): 118–123 [13] 焦盛岚, 杨炳儒, 翟云, 等. 一种用于非平衡数据分类的集成学习模型[J]. 计算机工程与应用, 2012, 48(29): 119–123, 219 JIAO Shenglan, YANG Bingru, ZHAI Yun, et al. Ensemble learning model for imbalanced data classification[J]. Computer Engineering and Applications, 2012, 48(29): 119–123, 219 [14] GUO H, LI Y, SHANG J, et al. Learning from class-imbalanced data: review of methods and applications[J]. Expert Systems With Applications, 2017, 73: 220–239. [15] 谢文旺, 孙云莲, 黄雅鑫. 基于改进随机森林的电力线通信优化算法研究[J]. 电力系统保护与控制, 2019, 47(11): 22–29 XIE Wenwang, SUN Yunlian, HUANG Yaxin. Research on power line communication optimization algorithm based on improved random forest[J]. Power System Protection and Control, 2019, 47(11): 22–29 [16] CHAWLA N V, BOWYER K W, HALL L O, et al. SMOTE: synthetic minority over-sampling technique[J]. Journal of Artificial Intelligence Research, 2002, 16: 321–357. [17] 严英杰, 盛戈皞, 刘亚东, 等. 基于滑动窗口和聚类算法的变压器状态异常检测[J]. 高电压技术, 2016, 42(12): 4020–4025 YAN Yingjie, SHENG Gehao, LIU Yadong, et al. Anomalous state detection of power transformer based on algorithm sliding windows and clustering[J]. High Voltage Engineering, 2016, 42(12): 4020–4025 [18] 王雷, 张瑞青, 盛伟, 等. 基于支持向量机的回归预测和异常数据检测[J]. 中国电机工程学报, 2009, 29(8): 92–96 WANG Lei, ZHANG Ruiqing, SHENG Wei, et al. Regression forecast and abnormal data detection based on support vector regression[J]. Proceedings of the CSEE, 2009, 29(8): 92–96 [19] 刘沅昆, 栾文鹏, 徐岩, 等. 针对配电变压器的数据清洗方法[J]. 电网技术, 2017, 41(3): 1008–1014 LIU Yuankun, LUAN Wenpeng, XU Yan, et al. Data cleaning method for distribution transformer[J]. Power System Technology, 2017, 41(3): 1008–1014 [20] 赵庆周, 李勇, 田世明, 等. 基于智能配电网大数据分析的状态监测与故障处理方法[J]. 电网技术, 2016, 40(3): 774–780 ZHAO Qingzhou, LI Yong, TIAN Shiming, et al. A state estimation and fault processing method based on big data analysis of smart distribution network[J]. Power System Technology, 2016, 40(3): 774–780 [21] LIU F T, TING K M, ZHOU Z H. Isolation forest[C]//2008 Eighth IEEE International Conference on Data Mining, December 15-19, 2008. Pisa, Italy. IEEE, 2008: 413–422. [22] XU D, WANG Y J, MENG Y L, et al. An improved data anomaly detection method based on isolation forest[C]//2017 10th International Symposium on Computational Intelligence and Design (ISCID), December 9-10, 2017. Hangzhou. IEEE, 2017: 287–291 [23] CHEN T Q, GUESTRIN C. XGBoost: a scalable tree boosting system[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining-KDD '16, August 13-17, 2016. San Francisco, California, USA. New York, USA: ACM Press, 2016. [24] FRIEDMAN J H. Greedy function approximation: a gradient boosting machine[J]. Annals of Statistics, 2001, 29(5): 1189–1232. [25] 赵洪山, 闫西慧, 王桂兰, 等. 应用深度自编码网络和XGBoost的风电机组发电机故障诊断[J]. 电力系统自动化, 2019, 43(1): 81–90 ZHAO Hongshan, YAN Xihui, WANG Guilan, et al. Fault diagnosis of wind turbine generator based on deep autoencoder network and XGBoost[J]. Automation of Electric Power Systems, 2019, 43(1): 81–90 [26] SUSTO G A, BEGHI A, MCLOONE S. Anomaly detection through on-line isolation forest: an application to plasma etching[C]//2017 40th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), May 22-26, 2017. Opatija, Croatia. IEEE, 2017 [27] XIA Y F, LIU C Z, LI Y Y, et al. A boosted decision tree approach using Bayesian hyper-parameter optimization for credit scoring[J]. Expert Systems With Applications, 2017, 78: 225–241.
|