中国电力 ›› 2024, Vol. 57 ›› Issue (5): 79-87.DOI: 10.11930/j.issn.1004-9649.202308084

• 新型能源体系下电碳协同市场机制及优化运行 • 上一篇    下一篇

考虑电力行业碳排放的全国碳价预测

王一蓉1(), 陈浩林1(), 林立身2(), 唐进2()   

  1. 1. 国家电网有限公司大数据中心,北京 100052
    2. 北京中创碳投科技有限公司,北京 100007
  • 收稿日期:2023-08-21 接受日期:2023-12-12 出版日期:2024-05-28 发布日期:2024-05-16
  • 作者简介:王一蓉(1979—),女,博士,正高级工程师,从事金融科技研究,E-mail:yirong-wang@sgcc.com
    陈浩林(1996—),男,硕士,工程师,从事机器学习研究,E-mail:sgccchenhaolin@163.com
    林立身(1991—),男,通信作者,硕士,从事碳定价与碳金融研究,E-mail:linlishen@sino-carbon.cn
    唐进(1979—),男,博士,高级工程师,从事企业碳管理研究,E-mail:tangjin@sino-carbon.cn
  • 基金资助:
    国家电网有限公司大数据中心科技项目(SGSJ0000KFJS2200034)。

National Carbon Price Prediction Considering Carbon Emissions from the Power Industry

Yirong WANG1(), Haolin CHEN1(), Lishen LIN2(), Jin TANG2()   

  1. 1. Big Data Center of State Grid Corporation of China, Beijing 100052, China
    2. SinoCarbon Innovation & Investment Co., Ltd., Beijing 100007, China
  • Received:2023-08-21 Accepted:2023-12-12 Online:2024-05-28 Published:2024-05-16
  • Supported by:
    This work is supported by Science and Technology Project of the Big Data Center of State Grid Corporation of China (No.SGSJ0000KFJS2200034).

摘要:

为更好预测全国碳价走势,基于带有外生变量的自回归差分移动平均模型(autoregressive integrated moving average with exogenous variable model,ARIMAX),分履约期和非履约期使用不同的外生变量分别构建了全国碳价预测模型。首先,基于对全国碳市场制度规则研究和交易特征分析,识别出全国碳价在非履约期主要受参与者预期的影响,在履约期碳价主要受企业履约需求驱动;其次,在模型训练方面,采用一种自回归差分移动平均模型,在不同阶段引入不同的外生变量来提升碳价预测效果;最后,基于全国碳市场第一履约期真实价格数据验证结果表明,所提的全国碳价预测模型在准确性方面优于基准模型。

关键词: 电力行业, 碳排放, 碳配额, 价格预测, 全国碳市场, ARIMAX模型

Abstract:

In order to better predict the trend of national carbon prices, a national carbon price prediction model is constructed based on the autoregressive integrated moving average with exogenous variable model (ARIMAX), using different exogenous variables during the fulfillment and non-fulfillment period. Firstly, based on research on the institutional rules of the national carbon market and analysis of trading characteristics, it is found that the national carbon price is mainly influenced by the expectations of participants during the non-fulfillment period, and is mainly driven by the fulfillment demand of enterprises during the fulfillment period. Secondly, in terms of model training, an autoregressive differential moving average model is adopted to introduce different exogenous variables at different stages to improve the effectiveness of carbon price prediction. Finally, the real price data of the first compliance period in the national carbon market are used for verification, and the results show that the proposed national carbon price prediction model in this article is superior to the benchmark model in terms of accuracy.

Key words: power industry, carbon emission, carbon allowances, price forecast, national carbon market, ARIMAX model