中国电力 ›› 2025, Vol. 58 ›› Issue (1): 141-152.DOI: 10.11930/j.issn.1004-9649.202401019
收稿日期:
2024-01-04
出版日期:
2025-01-28
发布日期:
2025-01-23
作者简介:
李江(1979—),男,博士,教授,从事可再生能源不确定性事件的预测、分析与主动控制研究,E-mail:lijiang_ee@shiep.edu.cn基金资助:
Jiang LI(), Yuanzheng FAN(
), Bo LIU(
)
Received:
2024-01-04
Online:
2025-01-28
Published:
2025-01-23
Supported by:
摘要:
在新型电力系统对源荷两侧提出更高低碳要求的背景下,电力系统合理的碳责任分摊对源荷协同低碳优化具有重要的指导意义。因此,提出一种计及水泥厂直接碳排放碳责任的源-荷低碳优化运行方法以进一步完善碳责任分摊。首先,分析水泥工业负荷所具有的生产直接碳排放和用电间接碳排放特性,根据该特性下的双向碳排放联结源荷两侧;再以碳排放流理论建立水泥厂双向碳流模型,并提出新碳责任分摊方法。然后,分析源-荷双向碳流特性,以总体碳排放最低为目标,构建电网双向碳流优化模型,评估用户和电网的减碳能力。最后,以IEEE 33节点验证新碳责任分摊的源-荷双向碳流低碳优化运行方法,结果表明在不影响水泥厂生产的前提下,该方法具备实际降碳效益和降碳有效性。
中图分类号:
李江, 范袁铮, 刘博. 计及水泥厂直接碳排放碳责任的源-荷低碳优化运行方法[J]. 中国电力, 2025, 58(1): 141-152.
Jiang LI, Yuanzheng FAN, Bo LIU. A Source-load Low Carbon Optimization Methodology Considering Carbon Responsibility for Direct Carbon Emissions from Cement Plants[J]. Electric Power, 2025, 58(1): 141-152.
原材料种类 | 碳排放因子 | |
石灰石 | 1.72×10–2 | |
砂岩 | 1.42×10–2 | |
黏土 | 2.91×10–4 | |
二水石膏 | 1.38×10–1 |
表 1 原材料生产碳排放因子
Table 1 Carbon emission factor of raw material production
原材料种类 | 碳排放因子 | |
石灰石 | 1.72×10–2 | |
砂岩 | 1.42×10–2 | |
黏土 | 2.91×10–4 | |
二水石膏 | 1.38×10–1 |
参数名称 | 数值 | |||
G1 | G2 | |||
最大输出功率/kW | 150 | 200 | ||
最小输出功率/kW | 0 | 0 | ||
机组碳势/(kg·(kW·h)–1) | 0.75 | 0.8 |
表 2 分布式燃气机组运行参数
Table 2 Operating parameters of distributed gas turbines
参数名称 | 数值 | |||
G1 | G2 | |||
最大输出功率/kW | 150 | 200 | ||
最小输出功率/kW | 0 | 0 | ||
机组碳势/(kg·(kW·h)–1) | 0.75 | 0.8 |
组别 | MSE | R | ||
水泥厂1训练组 | 0.979 | |||
水泥厂1验证组 | 0.984 | |||
水泥厂1测试组 | 0.978 | |||
水泥厂2训练组 | 0.976 | |||
水泥厂2验证组 | 0.982 | |||
水泥厂2测试组 | 0.982 |
表 3 水泥厂拟合结果对照
Table 3 Comparison of cement plant fitting results
组别 | MSE | R | ||
水泥厂1训练组 | 0.979 | |||
水泥厂1验证组 | 0.984 | |||
水泥厂1测试组 | 0.978 | |||
水泥厂2训练组 | 0.976 | |||
水泥厂2验证组 | 0.982 | |||
水泥厂2测试组 | 0.982 |
用户 | 收益/元 | |||||
降碳 | 电费 | 总计 | ||||
水泥厂1 | 44.880 | 37.275 | 82.155 | |||
水泥厂2 | 74.562 | 177.297 | 251.859 |
表 4 用户调节用电行为的单日收益明细
Table 4 Daily revenue details for users to adjust their electricity consumption behavior
用户 | 收益/元 | |||||
降碳 | 电费 | 总计 | ||||
水泥厂1 | 44.880 | 37.275 | 82.155 | |||
水泥厂2 | 74.562 | 177.297 | 251.859 |
1 | 陈家兴, 王春玲, 刘春明. 基于改进碳排放流理论的电力系统动态低碳调度方法[J]. 中国电力, 2023, 56 (3): 162- 172. |
CHEN Jiaxing, WANG Chunling, LIU Chunming. Dynamic low-carbon dispatching method of power system based on improved carbon emission flow theory[J]. Electric Power, 2023, 56 (3): 162- 172. | |
2 | 张硕, 肖阳明, 李英姿, 等. 新型电力系统电-碳-绿证市场协同运行的区块链关键技术[J]. 电力建设, 2023, 44 (11): 1- 12. |
ZHANG Shuo, XIAO Yangming, LI Yingzi, et al. Collaborative operation of electricity-carbon-green market of new-type power system based on blockchain technology[J]. Electric Power Construction, 2023, 44 (11): 1- 12. | |
3 | 吴翠华. 基于LCA的水泥生产企业碳-水足迹及碳减排潜能研究[D]. 北京: 北京交通大学, 2022: 4-5. |
WU Cuihua. Study on carbon-water footprint and carbon emission reduction potential of cement production enterprises based on LCA[D]. Beijing: Beijing Jiaotong University, 2022: 4-5. | |
4 | 周天睿, 康重庆, 徐乾耀, 等. 电力系统碳排放流分析理论初探[J]. 电力系统自动化, 2012, 36 (7): 38- 43, 85. |
ZHOU Tianrui, KANG Chongqing, XU Qianyao, et al. Preliminary theoretical investigation on power system carbon emission flow[J]. Automation of Electric Power Systems, 2012, 36 (7): 38- 43, 85. | |
5 | 周天睿, 康重庆, 徐乾耀, 等. 电力系统碳排放流的计算方法初探[J]. 电力系统自动化, 2012, 36 (11): 44- 49. |
ZHOU Tianrui, KANG Chongqing, XU Qianyao, et al. Preliminary investigation on a method for carbon emission flow calculation of power system[J]. Automation of Electric Power Systems, 2012, 36 (11): 44- 49. | |
6 | 周天睿, 康重庆, 徐乾耀, 等. 碳排放流在电力网络中分布的特性与机理分析[J]. 电力系统自动化, 2012, 36 (15): 39- 44. |
ZHOU Tianrui, KANG Chongqing, XU Qianyao, et al. Analysis on distribution characteristics and mechanisms of carbon emission flow in electric power network[J]. Automation of Electric Power Systems, 2012, 36 (15): 39- 44. | |
7 | 康重庆, 程耀华, 孙彦龙, 等. 电力系统碳排放流的递推算法[J]. 电力系统自动化, 2017, 41 (18): 10- 16. |
KANG Chongqing, CHENG Yaohua, SUN Yanlong, et al. Recursive calculation method of carbon emission flow in power systems[J]. Automation of Electric Power Systems, 2017, 41 (18): 10- 16. | |
8 |
LI B W, SONG Y H, HU Z C. Carbon flow tracing method for assessment of demand side carbon emissions obligation[J]. IEEE Transactions on Sustainable Energy, 2013, 4 (4): 1100- 1107.
DOI |
9 | 李昊. 广西水泥行业降碳路径研究[D]. 广西: 南宁师范大学, 2024: 31–45. |
LI Hao. Research on the carbon reduction path of Guangxi cement industry[D]. Guangxi: Nanning Normal University, 2024: 31–45. | |
10 | 张舒涵, 陈晖, 王彬, 等. 基于水泥企业电-碳关系的碳排放监测[J]. 中国环境科学, 2023, 43 (7): 3787- 3795. |
ZHANG Shuhan, CHEN Hui, WANG Bin, et al. Carbon emission monitoring based on analysis from "electricity-carbon" relationship of cement enterprises[J]. China Environmental Science, 2023, 43 (7): 3787- 3795. | |
11 | 陈丽霞, 孙弢, 周云, 等. 电力系统发电侧和负荷侧共同碳责任分摊方法[J]. 电力系统自动化, 2018, 42 (19): 106- 111. |
CHEN Lixia, SUN Tao, ZHOU Yun, et al. Method of carbon obligation allocation between generation side and demand side in power system[J]. Automation of Electric Power Systems, 2018, 42 (19): 106- 111. | |
12 | 边晓燕, 吴珊, 赵健, 等. 考虑源荷碳责任分摊的新型电力系统多级灵活性资源规划[J]. 电力自动化设备, 2024, 44 (2): 155- 164. |
BIAN Xiaoyan, WU Shan, ZHAO Jian, et al. Multi-level flexible resource planning of new power system considering source-load carbon responsibility allocation[J]. Electric Power Automation Equipment, 2024, 44 (2): 155- 164. | |
13 | 汪超群, 陈懿, 文福拴, 等. 电力系统碳排放流理论改进与完善[J]. 电网技术, 2022, 46 (5): 1683- 1693. |
WANG Chaoqun, CHEN Yi, WEN Fushuan, et al. Improvement and perfection of carbon emission flow theory in power systems[J]. Power System Technology, 2022, 46 (5): 1683- 1693. | |
14 | 颜丽, 鲍海. 基于电流分布的电网功率分布因子的计算[J]. 中国电机工程学报, 2011, 31 (1): 80- 85. |
YAN Li, BAO Hai. Algorithm of power distribution factor based on current distribution[J]. Proceedings of the CSEE, 2011, 31 (1): 80- 85. | |
15 | 李岩松, 刘启智, 张朕搏, 等. 基于电网功率分布的碳排放流计算方法[J]. 电网技术, 2017, 41 (3): 840- 844. |
LI Yansong, LIU Qizhi, ZHANG Zhenbo, et al. Algorithm of carbon emission flow based on power distribution[J]. Power System Technology, 2017, 41 (3): 840- 844. | |
16 | 肖静. 中国水泥工业固废替代的CO2减排研究[D]. 北京: 华北电力大学(北京), 2022: 7–9. |
XIAO Jing. Research on carbon emissions of solid waste replacement in China cement industry[D]. Beijing: North China Electric Power University (Beijing), 2022: 7–9. | |
17 |
GAO T M, SHEN L, SHEN M, et al. Evolution and projection of CO2 emissions for China's cement industry from 1980 to 2020[J]. Renewable and Sustainable Energy Reviews, 2017, 74, 522- 537.
DOI |
18 | 季军荣, 张庆年, 周州, 等. 水泥生料中碳酸盐煅烧热力学特性及其碳排放分析[J]. 四川水泥, 2023, (4): 1- 4. |
19 |
ACHEAMPONG A O, BOATENG E B. Modelling carbon emission intensity: application of artificial neural network[J]. Journal of Cleaner Production, 2019, 225, 833- 856.
DOI |
20 | 杨帆. 水泥生产碳排放研究[D]. 天津: 河北工业大学, 2020: 21–40. |
YANG Fan. Research of carbon emission from cement production[D]. Tianjin: Hebei University of Technology, 2020: 21–40. | |
21 |
KANG C Q, ZHOU T R, CHEN Q X, et al. Carbon emission flow from generation to demand: a network-based model[J]. IEEE Transactions on Smart Grid, 2015, 6 (5): 2386- 2394.
DOI |
22 | 林嘉琳, 王俐英, 李华, 等. 计及碳排放约束及源荷不确定性的电力系统协调优化配置研究[J]. 太阳能学报, 2023, 44 (10): 46- 57. |
LIN Jialin, WANG Liying, LI Hua, et al. Research on optimal allocation of power system considering carbon emission constraints and source-load uncertainty[J]. Acta Energiae Solaris Sinica, 2023, 44 (10): 46- 57. | |
23 |
CHENG Y H, ZHANG N, ZHANG B S, et al. Low-carbon operation of multiple energy systems based on energy-carbon integrated prices[J]. IEEE Transactions on Smart Grid, 2020, 11 (2): 1307- 1318.
DOI |
24 |
张笑演, 熊厚博, 王楚通, 等. 基于最优出力区间和碳交易的园区综合能源系统灵活经济调度[J]. 电力系统自动化, 2022, 46 (16): 72- 83.
DOI |
ZHANG Xiaoyan, XIONG Houbo, WANG Chutong, et al. Flexible economic dispatching of park-level integrated energy system based on optimal power output interval and carbon trading[J]. Automation of Electric Power Systems, 2022, 46 (16): 72- 83.
DOI |
|
25 | 李姚旺, 张宁, 杜尔顺, 等. 基于碳排放流的电力系统低碳需求响应机制研究及效益分析[J]. 中国电机工程学报, 2022, 42 (8): 2830- 2842. |
LI Yaowang, ZHANG Ning, DU Ershun, et al. Mechanism study and benefit analysis on power system low carbon demand response based on carbon emission flow[J]. Proceedings of the CSEE, 2022, 42 (8): 2830- 2842. | |
26 | 江苏省发展和改革委员会. 关于降低一般工商业电价有关事项的通知, 苏发改工价发〔2019〕499号[EB/OL]. (2019-05-24)[2024-01-19]. http://fzggw.jiangsu.gov.cn/art/2019/5/28/art_284_8348155.html. |
[1] | 谭玲玲, 汤伟, 楚冬青, 于子涵, 吉兴全, 张玉敏. 考虑电-氢一体化的微电网低碳-经济协同优化调度[J]. 中国电力, 2024, 57(5): 137-148. |
[2] | 李汶龙, 周云, 罗祾, 陈甜甜, 冯冬涵. 计及现货交易的电能量交易全环节用电碳责任分摊[J]. 中国电力, 2024, 57(5): 99-112. |
[3] | 陈家兴, 王春玲, 刘春明. 基于改进碳排放流理论的电力系统动态低碳调度方法[J]. 中国电力, 2023, 56(3): 162-172. |
[4] | 孙志媛, 孙艳, 刘默斯, 宋益. 考虑碳流需求响应的电力系统低碳运行策略[J]. 中国电力, 2023, 56(11): 95-103. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||