中国电力 ›› 2024, Vol. 57 ›› Issue (5): 99-112.DOI: 10.11930/j.issn.1004-9649.202401120
• 新型能源体系下电碳协同市场机制及优化运行 • 上一篇 下一篇
李汶龙1(), 周云1(
), 罗祾2(
), 陈甜甜2(
), 冯冬涵1(
)
收稿日期:
2024-01-26
接受日期:
2024-04-10
出版日期:
2024-05-28
发布日期:
2024-05-16
作者简介:
李汶龙(2001—),男,硕士研究生,从事电力市场、电力系统低碳优化研究,E-mail:wenlong_li@sjtu.edu.cn基金资助:
Wenlong LI1(), Yun ZHOU1(
), Ling LUO2(
), Tiantian CHEN2(
), Donghan FENG1(
)
Received:
2024-01-26
Accepted:
2024-04-10
Online:
2024-05-28
Published:
2024-05-16
Supported by:
摘要:
在双碳目标背景下,电力用户在电力交易中越来越重视电能所附带的环境属性。因此,需要开展以交易为主体的用电碳责任分摊方法研究。在充分考虑电能量交易全环节的特性基础上,提出了现货交易的碳排放流新模型与求解新方法,设计了电能量交易各环节碳流的衔接机制,构建了一种计及现货交易的电能量交易全环节用电碳责任分摊方法。使用PJM 5节点系统与IEEE 39、118节点系统进行的算例分析结果表明,所提方法可以稳定合理地实现现货交易碳分摊,有效建模电能量交易全环节对碳分摊的影响,帮助市场主体管控碳责任风险,且具有良好计算性能。
李汶龙, 周云, 罗祾, 陈甜甜, 冯冬涵. 计及现货交易的电能量交易全环节用电碳责任分摊[J]. 中国电力, 2024, 57(5): 99-112.
Wenlong LI, Yun ZHOU, Ling LUO, Tiantian CHEN, Donghan FENG. Carbon Allocation Throughout the Entire Process of Electric Energy Trading Considering Spot Trading[J]. Electric Power, 2024, 57(5): 99-112.
序号 | 节点 | 额定容量/MW | 类型 | 机组碳排放强度/ (t·(MW·h)–1) | ||||
G1 | 1 | 120 | 燃气 | 实测* | ||||
G2 | 1 | 120 | 燃气 | 实测* | ||||
G3 | 3 | 600 | 燃煤 | 实测* | ||||
G4 | 4 | 320 | 燃煤 | 实测* | ||||
G5 | 4 | 100 | 光伏 | 0 | ||||
G6 | 5 | 306 | 风电 | 0 |
表 1 机组参数设置
Table 1 Unit parameter setting
序号 | 节点 | 额定容量/MW | 类型 | 机组碳排放强度/ (t·(MW·h)–1) | ||||
G1 | 1 | 120 | 燃气 | 实测* | ||||
G2 | 1 | 120 | 燃气 | 实测* | ||||
G3 | 3 | 600 | 燃煤 | 实测* | ||||
G4 | 4 | 320 | 燃煤 | 实测* | ||||
G5 | 4 | 100 | 光伏 | 0 | ||||
G6 | 5 | 306 | 风电 | 0 |
场 景 | 节点 序号 | A方式下节点碳 强度/(t·(MW·h)–1) | B方式下节点碳 强度/(t·(MW·h)–1) | C方式下节点碳 强度/(t·(MW·h)–1) | ||||
日前交易 | 1 | 节点碳强度无解 | 0.8340 | 0.8191 | ||||
2 | 0.8340 | 0.8191 | ||||||
3 | 0.8212 | 0.8210 | ||||||
4 | 0.8581 | 0.8099 | ||||||
5 | 0.8101 | 0.8191 | ||||||
实时平衡 | 1 | 0.9671 | 0.9671 | 0.8418 | ||||
2 | 0.8348 | 0.8348 | 0.8230 | |||||
3 | 0.8210 | 0.8210 | 0.8210 | |||||
4 | 0.9671 | 0.9671 | 0.8418 | |||||
5 | –1453.3 | –1453.3 | 0.8418 |
表 2 现货交易碳分摊方式的对比
Table 2 Comparison of spot trading carbon allocation methods
场 景 | 节点 序号 | A方式下节点碳 强度/(t·(MW·h)–1) | B方式下节点碳 强度/(t·(MW·h)–1) | C方式下节点碳 强度/(t·(MW·h)–1) | ||||
日前交易 | 1 | 节点碳强度无解 | 0.8340 | 0.8191 | ||||
2 | 0.8340 | 0.8191 | ||||||
3 | 0.8212 | 0.8210 | ||||||
4 | 0.8581 | 0.8099 | ||||||
5 | 0.8101 | 0.8191 | ||||||
实时平衡 | 1 | 0.9671 | 0.9671 | 0.8418 | ||||
2 | 0.8348 | 0.8348 | 0.8230 | |||||
3 | 0.8210 | 0.8210 | 0.8210 | |||||
4 | 0.9671 | 0.9671 | 0.8418 | |||||
5 | –1453.3 | –1453.3 | 0.8418 |
场景 | 机组 序号 | 机组碳排放/t | 负荷 序号 | 负荷碳责任/t | 网损碳责任/t | |||||
常规用电碳分摊[ | G1 | 0 | L1 | 178.17 | 0.55 | |||||
G2 | 0 | |||||||||
G3 | 492.62 | L2 | 265.75 | |||||||
G4 | 185.96 | |||||||||
G5 | 0 | L3 | 234.11 | |||||||
G6 | 0 | |||||||||
考虑电能量交易全环节用电碳分摊 | G1 | 0 | L1 | 131.84 | 0.50 | |||||
G2 | 0 | |||||||||
G3 | 492.62 | L2 | 265.74 | |||||||
G4 | 185.96 | |||||||||
G5 | 0+ | L3 | 267.19 | |||||||
G6 | 0+( |
表 3 常规碳分摊与交易全环节碳分摊的对比
Table 3 Comparison of normal carbon allocation and trading carbon allocation
场景 | 机组 序号 | 机组碳排放/t | 负荷 序号 | 负荷碳责任/t | 网损碳责任/t | |||||
常规用电碳分摊[ | G1 | 0 | L1 | 178.17 | 0.55 | |||||
G2 | 0 | |||||||||
G3 | 492.62 | L2 | 265.75 | |||||||
G4 | 185.96 | |||||||||
G5 | 0 | L3 | 234.11 | |||||||
G6 | 0 | |||||||||
考虑电能量交易全环节用电碳分摊 | G1 | 0 | L1 | 131.84 | 0.50 | |||||
G2 | 0 | |||||||||
G3 | 492.62 | L2 | 265.74 | |||||||
G4 | 185.96 | |||||||||
G5 | 0+ | L3 | 267.19 | |||||||
G6 | 0+( |
电量分解曲线 | 碳责任 | 总计 | ||||||
中长期 | 日前 | 平衡 | ||||||
典型曲线 | 4341.59 | 405.82 | –1.04 | 4746.37 | ||||
自定义曲线 | 4365.53 | 381.88 | –1.04 | 4746.37 |
表 4 合约电量分解曲线对负荷L1碳风险管控的影响
Table 4 Impact of contract power decomposition curve on carbon risk management of load L1 单位:t
电量分解曲线 | 碳责任 | 总计 | ||||||
中长期 | 日前 | 平衡 | ||||||
典型曲线 | 4341.59 | 405.82 | –1.04 | 4746.37 | ||||
自定义曲线 | 4365.53 | 381.88 | –1.04 | 4746.37 |
项目 | 机组G5 | 机组G6 | ||
总日前交易碳责任/t | 14.7877 | –49.2002 | ||
总日前偏差电量/(MW·h) | –19.2400 | 66.9800 | ||
总实时平衡碳责任/t | –0.5700 | 2.4720 | ||
总实时偏差电量/(MW·h) | 0.6735 | –2.3928 | ||
总发电量/(MW·h) | 330.98 | 2197.85 |
表 5 新能源主体碳责任
Table 5 Carbon responsibility of renewable energy entities
项目 | 机组G5 | 机组G6 | ||
总日前交易碳责任/t | 14.7877 | –49.2002 | ||
总日前偏差电量/(MW·h) | –19.2400 | 66.9800 | ||
总实时平衡碳责任/t | –0.5700 | 2.4720 | ||
总实时偏差电量/(MW·h) | 0.6735 | –2.3928 | ||
总发电量/(MW·h) | 330.98 | 2197.85 |
场景 | 负荷 序号 | 碳责任 总量/t | 碳锁定电量比例/% | 不确定碳 责任/t | 网损/ (MW·h) | |||||||
中长期 | 日前 | |||||||||||
常规 方法 | L1 L2 L3 | 4746.4 6951.6 6255.5 | 0 0 0 | 0 0 0 | 4746.4 6951.6 6255.5 | |||||||
方法1 | L1 L2 L3 | 4981.6 6131.5 6863.8 | 9.85 11.82 8.28 | 9.85 11.82 8.28 | 4981.6 6131.5 6863.8 | |||||||
方法2 | L1 L2 L3 | 5261.4 5919.6 6802.8 | 93.05 107.60 91.62 | 93.05 107.60 91.62 | 507.53 –643.083 769.33 | |||||||
本文 方法 | L1 L2 L3 | 5263.4 5915.8 6804.6 | 93.05 107.60 91.62 | 100.02 100.03 99.82 | –1.04 –6.12 10.09 |
表 6 4类碳分摊方法的对比分析
Table 6 Comparison of 4 carbon allocation methods
场景 | 负荷 序号 | 碳责任 总量/t | 碳锁定电量比例/% | 不确定碳 责任/t | 网损/ (MW·h) | |||||||
中长期 | 日前 | |||||||||||
常规 方法 | L1 L2 L3 | 4746.4 6951.6 6255.5 | 0 0 0 | 0 0 0 | 4746.4 6951.6 6255.5 | |||||||
方法1 | L1 L2 L3 | 4981.6 6131.5 6863.8 | 9.85 11.82 8.28 | 9.85 11.82 8.28 | 4981.6 6131.5 6863.8 | |||||||
方法2 | L1 L2 L3 | 5261.4 5919.6 6802.8 | 93.05 107.60 91.62 | 93.05 107.60 91.62 | 507.53 –643.083 769.33 | |||||||
本文 方法 | L1 L2 L3 | 5263.4 5915.8 6804.6 | 93.05 107.60 91.62 | 100.02 100.03 99.82 | –1.04 –6.12 10.09 |
方法 | 不同算例规模的计算时间/s | |||||
5节点 | 39节点 | 118节点 | ||||
文献[ | 0.0042 | 0.0056 | 0.0072 | |||
本文方法 | 0.0539 | 0.1036 | 0.1224 |
表 7 计算效率分析
Table 7 Calculation efficiency analysis
方法 | 不同算例规模的计算时间/s | |||||
5节点 | 39节点 | 118节点 | ||||
文献[ | 0.0042 | 0.0056 | 0.0072 | |||
本文方法 | 0.0539 | 0.1036 | 0.1224 |
1 | 张智刚, 康重庆. 碳中和目标下构建新型电力系统的挑战与展望[J]. 中国电机工程学报, 2022, 42 (8): 2806- 2819. |
ZHANG Zhigang, KANG Chongqing. Challenges and prospects for constructing the new-type power system towards a carbon neutrality future[J]. Proceedings of the CSEE, 2022, 42 (8): 2806- 2819. | |
2 |
DU Q, XU Y, WU M, et al. A network analysis of indirect carbon emission flows among different industries in China[J]. Environ Sci Pollut Res Int, 2018, 25 (24): 24469- 24487.
DOI |
3 |
WANG Z H, LI Y M, CAI H L, et al. Comparative analysis of regional carbon emissions accounting methods in China: production-based versus consumption-based principles[J]. Journal of Cleaner Production, 2018, 194, 12- 22.
DOI |
4 | 张宁, 李姚旺, 黄俊辉, 等. 电力系统全环节碳计量方法与碳表系统[J]. 电力系统自动化, 2023, 47 (9): 2- 12. |
ZHANG Ning, LI Yaowang, HUANG Junhui, et al. Carbon measurement method and carbon meter system for whole chain of power system[J]. Automation of Electric Power Systems, 2023, 47 (9): 2- 12. | |
5 | 周天睿, 康重庆, 徐乾耀, 等. 电力系统碳排放流分析理论初探[J]. 电力系统自动化, 2012, 36 (7): 38- 43, 85. |
ZHOU Tianrui, KANG Chongqing, XU Qianyao, et al. Preliminary theoretical investigation on power system carbon emission flow[J]. Automation of Electric Power Systems, 2012, 36 (7): 38- 43, 85. | |
6 | 刘天蔚, 边晓燕, 吴珊, 等. 电力系统碳排放核算综述与展望[J]. 电力系统保护与控制, 2024, 52 (4): 176- 187. |
LIU Tianwei, BIAN Xiaoyan, WU Shan, et al. Overview and prospect of carbon emission accounting in electric power systems[J]. Power System Protection and Control, 2024, 52 (4): 176- 187. | |
7 |
KANG C Q, ZHOU T R, CHEN Q X, et al. Carbon emission flow from generation to demand: a network-based model[J]. IEEE Transactions on Smart Grid, 2015, 6 (5): 2386- 2394.
DOI |
8 | 李保卫, 胡泽春, 宋永华, 等. 用户侧电力碳排放强度的评估原则与模型[J]. 电网技术, 2012, 36 (8): 6- 11. |
LI Baowei, HU Zechun, SONG Yonghua, et al. Principle and model for assessment on carbon emission intensity caused by electricity at consumer side[J]. Power System Technology, 2012, 36 (8): 6- 11. | |
9 | 龚昱, 蒋传文, 李明炜, 等. 基于复功率潮流追踪的电力用户侧碳排放计量[J]. 电力系统自动化, 2014, 38 (17): 113- 117. |
GONG Yu, JIANG Chuanwen, LI Mingwei, et al. Carbon emission calculation on power consumer side based on complex power flow tracing[J]. Automation of Electric Power Systems, 2014, 38 (17): 113- 117. | |
10 |
TRANBERG B, CORRADI O, LAJOIE B, et al. Real-time carbon accounting method for the European electricity markets[J]. Energy Strategy Reviews, 2019, 26, 100367.
DOI |
11 | 汪超群, 陈懿, 文福拴, 等. 电力系统碳排放流理论改进与完善[J]. 电网技术, 2022, 46 (5): 1683- 1693. |
WANG Chaoqun, CHEN Yi, WEN Fushuan, et al. Improvement and perfection of carbon emission flow theory in power systems[J]. Power System Technology, 2022, 46 (5): 1683- 1693. | |
12 | 张笑演, 王橹裕, 黄蕾, 等. 考虑扩展碳排放流和碳交易议价模型的园区综合能源优化调度[J]. 电力系统自动化, 2023, 47 (9): 34- 46. |
ZHANG Xiaoyan, WANG Luyu, HUANG Lei, et al. Optimal dispatching of park-level integrated energy system considering augmented carbon emission flow and carbon trading bargain model[J]. Automation of Electric Power Systems, 2023, 47 (9): 34- 46. | |
13 | 包维瀚, 李姚旺, 季节, 等. 储能系统与双向电力负荷的碳排放核算方法[J]. 电网技术, 2023, 47 (8): 3049- 3058. |
BAO Weihan, LI Yaowang, JI Jie, et al. Carbon emission accounting method for energy storage system and bidirectional power load[J]. Power System Technology, 2023, 47 (8): 3049- 3058. | |
14 |
CHENG Y H, ZHANG N, WANG Y, et al. Modeling carbon emission flow in multiple energy systems[J]. IEEE Transactions on Smart Grid, 2019, 10 (4): 3562- 3574.
DOI |
15 | 陈家兴, 王春玲, 刘春明. 基于改进碳排放流理论的电力系统动态低碳调度方法[J]. 中国电力, 2023, 56 (3): 162- 172. |
CHEN Jiaxing, WANG Chunling, LIU Chunming. Dynamic low-carbon dispatching method of power system based on improved carbon emission flow theory[J]. Electric Power, 2023, 56 (3): 162- 172. | |
16 | 李岩松, 刘启智, 张朕搏, 等. 基于电网功率分布的碳排放流计算方法[J]. 电网技术, 2017, 41 (3): 840- 844. |
LI Yansong, LIU Qizhi, ZHANG Zhenbo, et al. Algorithm of carbon emission flow based on power distribution[J]. Power System Technology, 2017, 41 (3): 840- 844. | |
17 | 周全, 冯冬涵, 徐长宝, 等. 负荷侧碳排放责任直接分摊方法的比较研究[J]. 电力系统自动化, 2015, 39 (17): 153- 159. |
ZHOU Quan, FENG Donghan, XU Changbao, et al. Methods for allocating carbon obligation in demand side: a comparative study[J]. Automation of Electric Power Systems, 2015, 39 (17): 153- 159. | |
18 |
ZHOU Q, SHAHIDEHPOUR M, SUN T, et al. Cooperative game for carbon obligation allocation among distribution system operators to incentivize the proliferation of renewable energy[J]. IEEE Transactions on Smart Grid, 2019, 10 (6): 6355- 6365.
DOI |
19 | 陈丽霞, 孙弢, 周云, 等. 电力系统发电侧和负荷侧共同碳责任分摊方法[J]. 电力系统自动化, 2018, 42 (19): 106- 111. |
CHEN Lixia, SUN Tao, ZHOU Yun, et al. Method of carbon obligation allocation between generation side and demand side in power system[J]. Automation of Electric Power Systems, 2018, 42 (19): 106- 111. | |
20 | RUIZ P A, RUDKEVICH A. Analysis of marginal carbon intensities in constrained power networks[C]//2010 43rd Hawaii International Conference on System Sciences. Honolulu, Hawaii, USA. IEEE, 2010: 1–9. |
21 | 张钰, 张玥, 韩新阳, 等. 碳排放最小化条件下电动汽车有序充电策略研究[J]. 中国电力, 2020, 53 (4): 147- 154. |
ZHANG Yu, ZHANG Yue, HAN Xinyang, et al. Research on electric vehicle smart charging strategy on carbon emission minimization[J]. Electric Power, 2020, 53 (4): 147- 154. | |
22 | SUN T, FENG D H, DING T, et al. Directed graph based carbon flow tracing for demand side carbon obligation allocation[C]//2016 IEEE Power and Energy Society General Meeting (PESGM). Boston, MA, USA. IEEE, 2016: 1–5. |
23 |
WANG Y Q, QIU J, TAO Y C. Optimal power scheduling using data-driven carbon emission flow modelling for carbon intensity control[J]. IEEE Transactions on Power Systems, 2022, 37 (4): 2894- 2905.
DOI |
24 | 方仍存, 杨洁, 周奎, 等. 计及全生命周期碳成本的园区综合能源系统优化规划方法[J]. 中国电力, 2022, 55 (12): 135- 146. |
FANG Rengcun, YANG Jie, ZHOU Kui, et al. An optimal planning method for park IES considering life cycle carbon cost[J]. Electric Power, 2022, 55 (12): 135- 146. | |
25 | 孙志媛, 孙艳, 刘默斯, 等. 考虑碳流需求响应的电力系统低碳运行策略[J]. 中国电力, 2023, 56 (11): 95- 103. |
SUN Zhiyuan, SUN Yan, LIU Mosi, et al. Low-carbon operation strategy of power system considering carbon flow demand response[J]. Electric Power, 2023, 56 (11): 95- 103. | |
26 | 叶宇剑, 袁泉, 汤奕. 面向双碳目标的交通网-电网耦合网络中电动汽车负荷低碳优化方法[J]. 中国电力, 2023, 56 (5): 72- 79. |
YE Yujian, YUAN Quan, TANG Yi. Electric vehicle charging demand low carbon optimization in traffic-grid coupling networks towards "dual carbon" goal[J]. Electric Power, 2023, 56 (5): 72- 79. | |
27 | 国家发改委. 关于绿色电力交易试点工作方案的复函[EB/OL]. (2021-09-27)[2023-09-06].https://www.ndrc.gov.cn/fggz/fgzy/xmtjd/202109/t20210927_1297840_ext.html. |
28 | 上海市生态环境局. 关于调整本市碳交易企业外购电力中绿色电力碳排放核算方法的通知[EB/OL]. (2023-06-08)[2023-09-06].https://sthj.sh.gov.cn/hbzhywpt2025/20230608/ea3db4610e294b5480934b31a6d5e645.html. |
29 |
LI B W, SONG Y H, HU Z C. Carbon flow tracing method for assessment of demand side carbon emissions obligation[J]. IEEE Transactions on Sustainable Energy, 2013, 4 (4): 1100- 1107.
DOI |
30 |
JI L, LIANG S, QU S, et al. Greenhouse gas emission factors of purchased electricity from interconnected grids[J]. Applied Energy, 2016, 184, 751- 758.
DOI |
31 | 陈达, 鲜文军, 吴涛, 等. 混合电力市场下碳排放流的分配[J]. 电网技术, 2016, 40 (6): 1683- 1688. |
CHEN Da, XIAN Wenjun, WU Tao, et al. Allocation of carbon emission flow in hybrid electricity market[J]. Power System Technology, 2016, 40 (6): 1683- 1688. | |
32 | 李姚旺, 刘昱良, 杨晓斌, 等. 计及电量交易信息的用电碳计量方法[J]. 中国电机工程学报, 2024, 44 (2): 439- 451. |
LI Yaowang, LIU Yuliang, YANG Xiaobin, et al. Electricity carbon metering method considering electricity transaction information[J]. Proceedings of the CSEE, 2024, 44 (2): 439- 451. | |
33 | 王婧婷, 王宇扬, 周明, 等. 考虑绿电交易的用户间接碳排放核算方法[J]. 电网技术, 2024, 48 (1): 29- 39. |
WANG Jingting, WANG Yuyang, ZHOU Ming, et al. Accounting method of users' indirect carbon emissions considering green electricity trading[J]. Power System Technology, 2024, 48 (1): 29- 39. | |
34 | 广东电力交易中心. 关于发布南方(以广东起步)电力现货市场试运行关键配套实施细则的通知[EB/OL]. (2023-03-16)[2024-01-16].https://pm.gd.csg.cn/views/page/tzggCont-11152.html. |
35 | 王锡凡. 现代电力系统分析[M]. 北京: 科学出版社, 2003. |
36 | 杜正春, 王延延, 王毅, 等. 获取电力系统运行方式的多平衡机潮流模型[J]. 电力系统自动化, 2014, 38 (16): 41- 46, 87. |
DU Zhengchun, WANG Yanyan, WANG Yi, et al. Multi-balancing machine load flow models for obtaining power system operation mode[J]. Automation of Electric Power Systems, 2014, 38 (16): 41- 46, 87. | |
37 | LI F X, BO R. Small test systems for power system economic studies[C]//IEEE PES General Meeting. Minneapolis, MN. IEEE, 2010: 1–4. |
38 | TAIEB S B, HYNDMAN R J. Recursive and direct multi-step forecasting: the best of both worlds[M]. Melbourne: Department of Econometrics and Business Statistics, Monash Univ., 2012. |
[1] | 李江, 范袁铮, 刘博. 计及水泥厂直接碳排放碳责任的源-荷低碳优化运行方法[J]. 中国电力, 2025, 58(1): 141-152. |
[2] | 高政南, 姜楠, 陈启鑫, 徐江, 王海利, 辛力, 徐青贵. 德国电力市场能源转型建设及启示[J]. 中国电力, 2024, 57(6): 204-214. |
[3] | 王一蓉, 陈浩林, 林立身, 唐进. 考虑电力行业碳排放的全国碳价预测[J]. 中国电力, 2024, 57(5): 79-87. |
[4] | 李祥光, 谭青博, 李帆琪, 李旭东, 谭忠富. 电碳耦合对煤电机组现货市场结算电价影响分析模型[J]. 中国电力, 2024, 57(5): 113-125. |
[5] | 谭玲玲, 汤伟, 楚冬青, 于子涵, 吉兴全, 张玉敏. 考虑电-氢一体化的微电网低碳-经济协同优化调度[J]. 中国电力, 2024, 57(5): 137-148. |
[6] | 谭虎, 王小亮, 徐亭亭, 赵珂, 宿连超, 张文玉, 辛征. 风光沼储交直流混合农村微电网经济技术优化[J]. 中国电力, 2024, 57(3): 27-33. |
[7] | 郭娟娟, 沈迪, 童朴, 闫琨, 张小凡, 何昉. 中国三代核电经济评价方法与参数优化[J]. 中国电力, 2024, 57(3): 206-212, 223. |
[8] | 高志远, 庄卫金, 耿建, 李峰, 薛必克, 杨晓雷, 白柯鞠. 基于经济人假设的负荷侧资源市场化调节作用机理分析[J]. 中国电力, 2024, 57(3): 213-223. |
[9] | 李超英, 檀勤良. 基于智能体建模的新型电力系统下火电企业市场交易策略[J]. 中国电力, 2024, 57(2): 212-225. |
[10] | 仪忠凯, 侯朗博, 徐英, 吴永峰, 李志民, 吴俊飞, 冯腾, 韩柳. 市场环境下灵活性资源虚拟电厂聚合调控关键技术综述[J]. 中国电力, 2024, 57(12): 82-96. |
[11] | 任景, 高敏, 程松, 张小东, 刘友波. 面向新能源不确定性的西北电力电量平衡机制[J]. 中国电力, 2023, 56(9): 66-78. |
[12] | 薛贵元, 吴垠, 诸晓骏, 谈健, 明昊. 计及用能权配额约束的发电商竞价策略双层优化方法[J]. 中国电力, 2023, 56(5): 51-61. |
[13] | 陈家兴, 王春玲, 刘春明. 基于改进碳排放流理论的电力系统动态低碳调度方法[J]. 中国电力, 2023, 56(3): 162-172. |
[14] | 赵建立, 向佳霓, 汤卓凡, 漆磊, 艾芊, 王帝, 殷爽睿. 虚拟电厂在上海的实践探索与前景分析[J]. 中国电力, 2023, 56(2): 1-13. |
[15] | 陈璨, 王晶, 于宗民, 马原, 王乙, 范梁晨曦, 丁然, 李红权. 配电网自治单元规划研究综述与展望[J]. 中国电力, 2023, 56(12): 9-19. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||