中国电力 ›› 2024, Vol. 57 ›› Issue (5): 113-125.DOI: 10.11930/j.issn.1004-9649.202301056
• 新型能源体系下电碳协同市场机制及优化运行 • 上一篇 下一篇
李祥光1(), 谭青博2(
), 李帆琪1(
), 李旭东1(
), 谭忠富1,3(
)
收稿日期:
2023-01-30
接受日期:
2023-09-06
出版日期:
2024-05-28
发布日期:
2024-05-16
作者简介:
李祥光(2000—),女,硕士研究生,从事电力技术经济研究,E-mail:lixiangguang1666@163.com基金资助:
Xiangguang LI1(), Qingbo TAN2(
), Fanqi LI1(
), Xudong LI1(
), Zhongfu TAN1,3(
)
Received:
2023-01-30
Accepted:
2023-09-06
Online:
2024-05-28
Published:
2024-05-16
Supported by:
摘要:
煤电行业二氧化碳排放量占比最多,首先被纳入了全国性碳市场,而碳排放成本又对煤电现货市场结算电价造成一定程度的影响。基于此,构建了现货市场下不考虑碳排放成本的煤电机组竞价调度模型,并进行了模拟分析;继而构建了考虑碳排放成本的煤电机组竞价模型;再以广东省为例,模拟了煤电机组在“有无风光出力”“不同碳市场”情景下煤电机组现货市场报价及出清情况的变化。结果显示,随着碳市场的逐步完善,碳价和配额总量进一步收紧,煤电机组报价逐渐升高,现货市场结算电价也随之提高,夏季有风有光情景下轻度、中度、重度碳市场的平均出清电价分别为0.1607元/(kW·h)、0.1863元/(kW·h)、0.2461元/(kW·h),较未引入碳市场时分别增加了0.18%、16.14%、53.41%。
李祥光, 谭青博, 李帆琪, 李旭东, 谭忠富. 电碳耦合对煤电机组现货市场结算电价影响分析模型[J]. 中国电力, 2024, 57(5): 113-125.
Xiangguang LI, Qingbo TAN, Fanqi LI, Xudong LI, Zhongfu TAN. Analysis Model to Study the Influence of Electrocarbon Coupling on Settlement Price of Coal Power Units in Spot Market[J]. Electric Power, 2024, 57(5): 113-125.
指标 | 轻度情景 | 中度情景 | 重度情景 | |||||
有偿配额比例/% | 5 | 30 | 50 | |||||
碳价/(元·t–1) | 58.53 | 100 | 200 | |||||
机组碳排放 强度/ (t·(MW·h)–1) | 300 MW≤P<600 MW | 0.941 | 0.941 | 0.941 | ||||
600 MW≤P<1000 MW | 0.843 | 0.843 | 0.843 | |||||
P≥1000 MW | 0.795 | 0.795 | 0.795 | |||||
配额分配基 准值/ (t·(MW·h)–1) | 300 MW≤P<600 MW | 0.979 | 0.857 | 0.767 | ||||
600 MW≤P<1000 MW | 0.877 | 0.765 | 0.698 | |||||
P≥1000 MW | 0.877 | 0.765 | 0.698 |
表 1 碳交易市场情景设置
Table 1 Carbon market scenario settings
指标 | 轻度情景 | 中度情景 | 重度情景 | |||||
有偿配额比例/% | 5 | 30 | 50 | |||||
碳价/(元·t–1) | 58.53 | 100 | 200 | |||||
机组碳排放 强度/ (t·(MW·h)–1) | 300 MW≤P<600 MW | 0.941 | 0.941 | 0.941 | ||||
600 MW≤P<1000 MW | 0.843 | 0.843 | 0.843 | |||||
P≥1000 MW | 0.795 | 0.795 | 0.795 | |||||
配额分配基 准值/ (t·(MW·h)–1) | 300 MW≤P<600 MW | 0.979 | 0.857 | 0.767 | ||||
600 MW≤P<1000 MW | 0.877 | 0.765 | 0.698 | |||||
P≥1000 MW | 0.877 | 0.765 | 0.698 |
机组编号 | 单机容量/ MW | 容量等级/MW | 厂用电率/ % | 负荷率 上限/% | ||||
1 | 300 | 300≤P<600 | 4.05 | 100 | ||||
2 | 600 | 600≤P<1000 | 5.24 | 100 | ||||
3 | 1000 | P≥1000 | 4.92 | 100 |
表 2 3台常规煤电机组细分
Table 2 Three conventional coal power units are subdivided
机组编号 | 单机容量/ MW | 容量等级/MW | 厂用电率/ % | 负荷率 上限/% | ||||
1 | 300 | 300≤P<600 | 4.05 | 100 | ||||
2 | 600 | 600≤P<1000 | 5.24 | 100 | ||||
3 | 1000 | P≥1000 | 4.92 | 100 |
机组 编号 | 不同负荷率下的供电煤耗/(g·(kW·h)–1) | |||||||||||
≥90% | 80%~90% | 70%~80% | 60%~70% | 50%~60% | 45%~50% | |||||||
1号 | 298 | 301 | 304 | 309 | 316 | 326 | ||||||
2号 | 289 | 291 | 295 | 301 | 310 | 321 | ||||||
3号 | 272 | 273 | 277 | 284 | 293 | 304 |
表 3 煤电机组在各负荷率下的平均供电煤耗
Table 3 Average coal consumption of power supply of coal power unit at each load rate
机组 编号 | 不同负荷率下的供电煤耗/(g·(kW·h)–1) | |||||||||||
≥90% | 80%~90% | 70%~80% | 60%~70% | 50%~60% | 45%~50% | |||||||
1号 | 298 | 301 | 304 | 309 | 316 | 326 | ||||||
2号 | 289 | 291 | 295 | 301 | 310 | 321 | ||||||
3号 | 272 | 273 | 277 | 284 | 293 | 304 |
机组 编号 | 火电机组容量等级 | 限额/ (元·(MW·h)–1) | 先进值/ (元·(MW·h)–1) | |||
1 | 300≤P<600 | 1.45 | 1.05 | |||
2 | 600≤P<1000 | 1.25 | 0.75 | |||
3 | P≥1000 | 1.00 | — |
表 4 生产消耗性材料费限额标准
Table 4 Production consumable material cost limit standard
机组 编号 | 火电机组容量等级 | 限额/ (元·(MW·h)–1) | 先进值/ (元·(MW·h)–1) | |||
1 | 300≤P<600 | 1.45 | 1.05 | |||
2 | 600≤P<1000 | 1.25 | 0.75 | |||
3 | P≥1000 | 1.00 | — |
参数 | 设定值 | |
煤价/(元·t–1) | 547.87 | |
耗水率/(kg·(kW·h)–1) | 1.30 | |
水价/(元·m–3) | 4.86 | |
环保税率/(元·(污染当量)–1) | 1.80 | |
NOx单位排放量/(g·(kW·h)–1) | 0.36 | |
烟尘单位排放量/(g·(kW·h)–1) | 0.08 | |
SO2单位排放量/(g·(kW·h)–1) | 0.39 |
表 5 机组运行成本参数设置
Table 5 Unit operation cost parameter setting
参数 | 设定值 | |
煤价/(元·t–1) | 547.87 | |
耗水率/(kg·(kW·h)–1) | 1.30 | |
水价/(元·m–3) | 4.86 | |
环保税率/(元·(污染当量)–1) | 1.80 | |
NOx单位排放量/(g·(kW·h)–1) | 0.36 | |
烟尘单位排放量/(g·(kW·h)–1) | 0.08 | |
SO2单位排放量/(g·(kW·h)–1) | 0.39 |
图 15 夏季无风无光情景煤电机组出清情况及电价
Fig.15 Clearing situation and electricity price of coal-fired power units under the situation of no wind and no light in summer
情景 | 碳市场总收入/万元 | |||||
3号机组 | 2号机组 | 1号机组 | ||||
轻度碳市场 | 4.86 | –0.60 | –0.09 | |||
中度碳市场 | –55.99 | –31.19 | –4.68 | |||
重度碳市场 | –192.56 | –100.18 | –15.30 |
表 6 机组的碳市场总收入
Table 6 Total carbon market revenue and cost of the unit
情景 | 碳市场总收入/万元 | |||||
3号机组 | 2号机组 | 1号机组 | ||||
轻度碳市场 | 4.86 | –0.60 | –0.09 | |||
中度碳市场 | –55.99 | –31.19 | –4.68 | |||
重度碳市场 | –192.56 | –100.18 | –15.30 |
1 |
JUNG H, SONG S, AHN Y H, et al. Effects of emission trading schemes on corporate carbon productivity and implications for firm-level responses[J]. Scientific Reports, 2021, 11 (1): 11679.
DOI |
2 | 郑国光. 支撑“双碳” 目标实现的问题辨识与关键举措研究[J]. 中国电力, 2023, 56 (11): 1- 8. |
ZHENG Guoguang. Problem identification and key measures to support the achievement of carbon peak and carbon neutrality[J]. Electric Power, 2023, 56 (11): 1- 8. | |
3 | 袁家海, 张为荣, 沈啟霞, 等. 煤电完全市场化后的电碳市场耦合问题研究[J]. 中国国情国力, 2021, (12): 12- 20. |
YUAN Jiahai, ZHANG Ronghui, SHEN Qixia, et al. Research on coupling problem of electric carbon market after full marketization of coal power[J]. China National Situation and Strength, 2021, (12): 12- 20. | |
4 | 陈杰. 碳市场对电力现货市场影响的模拟研究[D]. 北京: 华北电力大学, 2020. |
CHEN Jie. Simulation study on the influence of carbon market on electricity spot market[D]. Beijing: North China Electric Power University, 2020. | |
5 | 冯升波, 黄建, 周伏秋, 等. 碳市场对可再生能源发电行业的影响[J]. 宏观经济管理, 2019, (11): 55- 62. |
FENG Shengbo, HUANG Jian, ZHOU Fuqiu, et al. Influence of carbon market on renewable energy power generation industry[J]. Macroeconomic Management, 2019, (11): 55- 62. | |
6 | 吉斌, 孙绘, 梁肖, 等. 面向“双碳”目标的碳电市场融合交易探讨[J]. 华电技术, 2021, 43 (6): 33- 40. |
JI Bin, SUN Hui, LIANG Xiao, et al. Discussion on convergent trading of the carbon and electricity market on the path to carbon peak and carbon neutrality[J]. Huadian Technology, 2021, 43 (6): 33- 40. | |
7 | 赵长红, 张明明, 吴建军, 等. 碳市场和电力市场耦合研究[J]. 中国环境管理, 2019, 11 (4): 105- 112. |
ZHAO Changhong, ZHANG Mingming, WU Jianjun, et al. The coupling study on carbon market and power market[J]. Chinese Journal of Environmental Management, 2019, 11 (4): 105- 112. | |
8 | 冯昌森, 谢方锐, 文福拴, 等. 基于智能合约的绿证和碳联合交易市场的设计与实现[J]. 电力系统自动化, 2021, 45 (23): 1- 11. |
FENG Changsen, XIE Fangrui, WEN Fushuan, et al. Design and implementation of joint trading market for green power certificate and carbon based on smart contract[J]. Automation Electric Power Systems, 2021, 45 (23): 1- 11. | |
9 | 马忠玉, 冶伟峰, 蔡松锋, 等. 基于SICGE模型的中国碳市场与电力市场协调发展研究[J]. 宏观经济研究, 2019, (5): 145- 153. |
MA Zhongyu, YE Weifeng, CAI Songfeng, et al. A study on coordinated development of China's carbon market and power market based on SICGE model[J]. Macroeconomics, 2019, (5): 145- 153. | |
10 | 孙友源, 郭振, 张继广, 等. 碳市场与电力市场机制影响下发电机组成本分析与竞争力研究[J]. 气候变化研究进展, 2021, 17 (4): 476- 483. |
SUN Youyuan, GUO Zhen, ZHANG Jiguang, et al. Research on cost analysis and competitiveness of power generation units under the influence of carbon market and power market coupling mechanism[J]. Climate Change Research, 2021, 17 (4): 476- 483. | |
11 | WANG P, TANG J J, ZHANG Z, et al. Bidding strategy optimization for power generation company in carbon emission rights and electricity market[J]. Energy Reports, 2022, 8, 325- 331. |
12 | 张刚, 张峰, 张利, 等. 考虑碳排放交易的日前调度双阶段鲁棒优化模型[J]. 中国电机工程学报, 2018, 38 (18): 5490- 5499. |
ZHANG Gang, ZHANG Feng, ZHANG Li, et al. Two-stage robust optimization model of day-ahead scheduling considering carbon emissions trading[J]. Proceedings of the CSEE, 2018, 38 (18): 5490- 5499. | |
13 |
ZHANG X Y, GUO X P, ZHANG X P. Bidding modes for renewable energy considering electricity-carbon integrated market mechanism based on multi-agent hybrid game[J]. Energy, 2023, 263, 125616.
DOI |
14 | 刘洋, 崔雪, 谢雄, 等. 电碳联动环境下考虑社会效益最优的发电权交易研究[J]. 电测与仪表, 2020, 57 (13): 112- 117, 148. |
LIU Yang, CUI Xue, XIE Xiong, et al. Research on the trading of clean energy power generation right with the best social benefit under the electric-carbon linkage environment[J]. Electrical Measurement & Instrumentation, 2020, 57 (13): 112- 117, 148. | |
15 | DING Tao, LU Runzhao, XU Yiting, et al. Joint electricity and carbon market for Northeast Asia energy interconnection[J]. Global Energy Interconnection, 2020, 3 (2): 99- 110. |
16 |
ANDRIANESIS P, BISKAS P, LIBEROPOULOS G. Evaluating the cost of emissions in a pool-based electricity market[J]. Applied Energy, 2021, 298, 117253.
DOI |
17 |
GUO B W, CASTAGNETO GISSEY G. Cost pass-through in the British wholesale electricity market[J]. Energy Economics, 2021, 102, 105497.
DOI |
18 |
CLUDIUS J, DE BRUYN S, SCHUMACHER K, et al. Ex-post investigation of cost pass-through in the EU ETS - an analysis for six industry sectors[J]. Energy Economics, 2020, 91, 104883.
DOI |
19 |
FATEMEH N, STEFAN T, ZHU L X. Carbon pass-through rates on spot electricity prices in Australia[J]. Energy Economics, 2021, 96, 105178.
DOI |
20 |
YU S Y, CHEN Y K, PU L C, et al. The CO2 cost pass-through and environmental effectiveness in emission trading schemes[J]. Energy, 2022, 239, 122257.
DOI |
21 | 陈志斌, 林立身. 全球碳市场建设历程回顾与展望[J]. 环境与可持续发展, 2021, 46 (3): 37- 44. |
CHEN Zhibin, LIN Lishen. Review and prospect of carbon emission trading market in the world[J]. Environment and Sustainable Development, 2021, 46 (3): 37- 44. | |
22 | 尚楠, 陈政, 卢治霖, 等. 电力市场、碳市场及绿证市场互动机理及协调机制[J]. 电网技术, 2023, 47 (1): 142- 154. |
SHANG Nan, CHEN Zheng, LU Zhilin, et al. Interaction principle and cohesive mechanism between electricity market, carbon market and green power certificate market[J]. Power System Technology, 2023, 47 (1): 142- 154. | |
23 | 孙文娟, 张胜军, 孙海萍. 试点碳市场发展现状及对全国碳市场的启示[J]. 国际石油经济, 2021, 29 (7): 1- 8. |
SUN Wenjuan, ZHANG Shengjun, SUN Haiping. Development status of pilot carbon markets and its enlightenments to national carbon market[J]. International Petroleum Economics, 2021, 29 (7): 1- 8. | |
24 | 郑爽, 刘海燕. 碳交易试点地区电力部门配额分配比较研究及对全国的借鉴[J]. 气候变化研究进展, 2020, 16 (6): 748- 757. |
ZHENG Shuang, LIU Haiyan. Comparative study on power sector allowance allocation among China's Emissions Trading Scheme pilots and its implications for national carbon market[J]. Climate Change Research, 2020, 16 (6): 748- 757. | |
25 | 郭尊, 李庚银, 周明. 计及碳交易机制的电-气联合系统快速动态鲁棒优化运行[J]. 电网技术, 2020, 44 (4): 1220- 1228. |
GUO Zun, LI Gengyin, ZHOU Ming. Fast and dynamic robust optimization of integrated electricity-gas system operation with carbon trading[J]. Power System Technology, 2020, 44 (4): 1220- 1228. | |
26 | 袁泉, 张蔷, 禤培正, 等. 南方(以广东起步)电力现货市场双边交易仿真分析研究[J]. 广东电力, 2022, 35 (6): 10- 17. |
YUAN Quan, ZHANG Qiang, XUAN Peizheng, et al. Simulation analysis and research on bilateral trade in Southern China (starting from Guangdong Province) electric spot market[J]. Guangdong Electric Power, 2022, 35 (6): 10- 17. | |
27 | 郑鑫, 邱泽晶, 郭松, 等. 电动汽车V2G调度优化策略的多指标评估方法[J]. 新能源进展, 2022, 10 (5): 485- 494. |
ZHENG Xin, QIU Zejing, GUO Song, et al. Multi-index evaluation method considering V2G scheduling optimization strategy of EV charging and discharging[J]. Advances in New and Renewable Energy, 2022, 10 (5): 485- 494. | |
28 | 朱国荣, 单钰淇, 劳咏昶, 等. 电力现货市场环境下的火电厂定价策略研究: 基于短期竞价博弈模型的分析[J]. 价格理论与实践, 2020, (6): 92- 96, 180. |
ZHU Guorong, SHAN Yuqi, LAO Yongchang, et al. Research on the pricing strategy of thermal power plants in the electricity spot market——analysis based on short-term bidding game model[J]. Price: Theory & Practice, 2020, (6): 92- 96, 180. | |
29 | 艾昱. 中国上网电价机制改革研究[D]. 北京: 华北电力大学(北京), 2020. |
AI Yu. Research on the reform of feed-in tariff mechanism in China [D]. Beijing: North China Electric Power University (Beijing), 2020. | |
30 | 聂佳鑫. 欧盟碳排放权交易发展对我国的启示[J]. 黑龙江金融, 2021, (9): 62- 64. |
31 | 中国工商银行与北京环境交易所联合课题组. 碳交易对银行信用风险的压力测试[J]. 清华金融评论, 2020, (9): 36- 38. |
32 | 周小惠. 碳交易市场背景下区域碳排放权配额动态分配机制及方法研究[D]. 成都: 西华大学, 2022. |
ZHOU Xiaohui. Research on the dynamic allocation mechanism and method of regional carbon emission rights quota under the background of carbon trading market[D]. Chengdu: Xihua University, 2022. |
[1] | 王一蓉, 陈浩林, 林立身, 唐进. 考虑电力行业碳排放的全国碳价预测[J]. 中国电力, 2024, 57(5): 79-87. |
[2] | 李汶龙, 周云, 罗祾, 陈甜甜, 冯冬涵. 计及现货交易的电能量交易全环节用电碳责任分摊[J]. 中国电力, 2024, 57(5): 99-112. |
[3] | 齐屹, 张静, 刘菁, 魏胜楠, 王雁凌, 丁肇豪. 新能源入市风险下计及影响层的现货限价自适模型[J]. 中国电力, 2024, 57(11): 94-101. |
[4] | 许凌, 张希鹏, 曹益奇, 张丙金, 董成, 谭振飞. 考虑备用互济的省间现货电能与备用耦合出清模型[J]. 中国电力, 2023, 56(9): 48-56. |
[5] | 吴迪, 王正风, 高卫恒, 应益强. 省级电力现货市场全网安全校核[J]. 中国电力, 2023, 56(9): 57-65. |
[6] | 陈家兴, 王春玲, 刘春明. 基于改进碳排放流理论的电力系统动态低碳调度方法[J]. 中国电力, 2023, 56(3): 162-172. |
[7] | 李旭东, 杨烨, 李帆琪, 时全佑, 谭忠富. 计及电价不确定性和容量衰减的电动汽车充放电商业模式[J]. 中国电力, 2023, 56(1): 38-48. |
[8] | 庄晓丹, 刘卫东, 黄为群, 邓晖, 王伟. 浙江电力现货市场环境下储能的市场交易机制与效益分析[J]. 中国电力, 2022, 55(6): 80-85. |
[9] | 张明理, 张娜, 武志锴, 高靖, 徐熙林, 李健, 吕泉. 日前电能市场与深度调峰市场联合出清模型[J]. 中国电力, 2022, 55(2): 138-144. |
[10] | 关立, 周蕾, 刘航航, 周新生, 陶玮, 赵梓州. 独立储能电站参与电力现货市场机制及试运行分析[J]. 中国电力, 2022, 55(10): 185-190. |
[11] | 徐云. 现货市场中考虑中长期交易限制的售电公司决策[J]. 中国电力, 2021, 54(6): 79-85. |
[12] | 甘子莘, 荆朝霞, 谢文锦, 刘煜, 潘湛华. 适应中国电力市场改革现状的输电权分配机制[J]. 中国电力, 2021, 54(6): 54-61. |
[13] | 冷媛, 辜炜德. 澳大利亚电力金融市场运营机制及对中国电力市场建设的启示[J]. 中国电力, 2021, 54(6): 36-43,61. |
[14] | 林华, 杨明辉, 盖超, 林晓凡, 冯冬涵. 现货市场环境下的可再生能源消纳责任权重市场机制设计[J]. 中国电力, 2021, 54(6): 22-28. |
[15] | 刘景青, 马伟, 贺楠, 谢晓琳, 陈婧, 夏清. 市场环境下分布式光伏协调售电交易机制及策略[J]. 中国电力, 2021, 54(11): 29-36. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||