中国电力 ›› 2024, Vol. 57 ›› Issue (2): 212-225.DOI: 10.11930/j.issn.1004-9649.202303088

• 技术经济 • 上一篇    下一篇

基于智能体建模的新型电力系统下火电企业市场交易策略

李超英1(), 檀勤良1,2,3()   

  1. 1. 华北电力大学 经济与管理学院,北京 102206
    2. 北京市能源发展研究基地,北京 102206
    3. 新能源电力与低碳发展研究北京市重点实验室(华北电力大学),北京 102206
  • 收稿日期:2023-03-18 接受日期:2023-10-23 出版日期:2024-02-28 发布日期:2024-02-28
  • 作者简介:李超英(1999—),女,硕士研究生,从事电力市场、能源经济研究,E-mail:leechying@163.com
    檀勤良(1969—),男,通信作者,教授,博士生导师,从事能源经济与政策、能源环境建模与优化等研究,E-mail:tan.qinliang1@gmail.com
  • 基金资助:
    国家自然科学基金资助项目(双碳目标下发电企业低碳技术创新扩散及其产业链协同演化机制研究,72272050)。

Market Trading Strategy for Thermal Power Enterprise in New Power System Based on Agent Modeling

Chaoying LI1(), Qinliang TAN1,2,3()   

  1. 1. School of Economics and Management, North China Electric Power University, Beijing 102206, China
    2. Research Center for Beijing Energy Development, Beijing 102206, China
    3. Beijing Key Laboratory of Renewable Electric Power and Low Carbon Development, North China Electric Power University, Beijing 102206, China
  • Received:2023-03-18 Accepted:2023-10-23 Online:2024-02-28 Published:2024-02-28
  • Supported by:
    This work is supported by National Natural Science Foundation of China (Research on the Mechanism of Low-Carbon Technology Innovation Diffusion and Industrial Chain Co-evolution of Power Generation Enterprises under 30·60 Target, No.72272050).

摘要:

高比例新能源渗透情景下火电企业竞价策略研究对保障火电企业运营和推进新型电力系统建设具有重要意义。基于智能体建模框架,建立电力现货市场仿真模型和机组自学习决策模型。其中,环境模块建立了考虑源荷双侧不确定性的风光火储多方参与的电力现货市场出清模型;智能体模块将火电机组投标决策过程刻画为部分观测马尔科夫决策过程,采用深度确定性策略梯度算法求解。以HRP-38节点系统为例进行仿真分析,明晰高比例新能源下火电企业市场交易策略。结果表明:在不考虑火电机组提供辅助服务的前提下,随着新能源渗透率的提高,仍有部分位置独特且具有成本优势的火电机组拥有竞争力;预测误差增大将使大容量火电机组投标策略趋于保守,而小容量机组投标策略相反;火电机组在各类场景下均具有隐性共谋倾向,即彼此隐藏信息时仍同时提高报价。

关键词: 电力市场, 多智能体建模, 强化学习, 报价策略, 辅助决策

Abstract:

It is of great significance to study the bidding strategy of thermal power enterprises under the scenario of high proportion of new energy penetration for guaranteeing the normal operation of thermal power enterprises and promoting the construction of new power system. Based on the multi-agent modeling framework, this paper establishes a power spot market simulation model and an unit self-learning decision model. In the environment module, a spot market clearing model with multiple participation of wind-solar-fire-storage is established considering the uncertainty of both sources and loads. The bidding decision-making process of thermal power units is described as a partially observed Markov decision-making process in the agent module and solved by improved Deep Deterministic Policy Gradient algorithm. Finally, a HRP-38 node system is simulated to clarify the market trading strategy for thermal power enterprises under a high proportion of new energy. The results show that, when the auxiliary services provided by thermal power units are not considered, with the increase of new energy penetration, some thermal power units with unique locations and cost advantages are still competitive; the increase of prediction error will make the bidding strategy of large-capacity thermal power units tend to be conservative, while the bidding strategy of small-capacity units is opposite; the thermal power units have implicit collusion tendency in all kinds of scenarios, that is, they will increase the quotation at the same time while hiding information from each other.

Key words: electricity market, multi-agent modeling, reinforcement learning, quotation strategy, auxiliary decision