中国电力 ›› 2024, Vol. 57 ›› Issue (3): 43-50.DOI: 10.11930/j.issn.1004-9649.202311065
焦昊1(), 殷岩岩2(
), 吴晨3(
), 刘建1, 徐春雷3, 徐贤3, 孙国强2
收稿日期:
2023-11-15
出版日期:
2024-03-28
发布日期:
2024-03-26
作者简介:
焦昊(1991—),男,工程师,从事人工智能在电网中的应用研究,E-mail:jiaohaopeter@163.com基金资助:
Hao JIAO1(), Yanyan YIN2(
), Chen WU3(
), Jian LIU1, Chunlei XU3, Xian XU3, Guoqiang SUN2
Received:
2023-11-15
Online:
2024-03-28
Published:
2024-03-26
Supported by:
摘要:
提出一种基于离线策略的安全强化学习方法,通过离线训练大量配电网历史运行数据,摆脱了传统优化方法对完备且准确模型的依赖。首先,结合配电网络参数信息,建立了基于约束马尔可夫决策过程的有功无功优化模型;其次,基于原始对偶优化法设计了新型安全强化学习方法,该方法在最大化未来折扣奖励的同时最小化成本函数;最后,在配电系统上进行仿真。仿真结果表明:所提方法能够根据配电网实时观测信息,在线生成满足复杂约束条件且具有经济效益的调度策略。
焦昊, 殷岩岩, 吴晨, 刘建, 徐春雷, 徐贤, 孙国强. 基于安全强化学习的主动配电网有功-无功协调优化调度[J]. 中国电力, 2024, 57(3): 43-50.
Hao JIAO, Yanyan YIN, Chen WU, Jian LIU, Chunlei XU, Xian XU, Guoqiang SUN. Coordinated Optimization of Active and Reactive Power of Active Distribution Network Based on Safety Reinforcement Learning[J]. Electric Power, 2024, 57(3): 43-50.
MT 节点 | (kV·A) | (元·(kW·h)–1) | (元·(kW·h)–1) | |||||||||||
25 | 825 | 0.8 | 0 | 0.20 | 0 | |||||||||
95 | 625 | 0.8 | 0 | 0.15 | 0 | |||||||||
115 | 625 | 0.8 | 0 | 0.18 | 0 | |||||||||
DESS 节点 | (kW·h) | (kW·h) | kW | kW | (元·(kW·h)–1) | |||||||||
21, 57 | 2 000 | 200 | 500 | 500 | 0.98 | 0.1 |
表 1 DESS和MT设备参数
Table 1 DESS and MT equipment parameters
MT 节点 | (kV·A) | (元·(kW·h)–1) | (元·(kW·h)–1) | |||||||||||
25 | 825 | 0.8 | 0 | 0.20 | 0 | |||||||||
95 | 625 | 0.8 | 0 | 0.15 | 0 | |||||||||
115 | 625 | 0.8 | 0 | 0.18 | 0 | |||||||||
DESS 节点 | (kW·h) | (kW·h) | kW | kW | (元·(kW·h)–1) | |||||||||
21, 57 | 2 000 | 200 | 500 | 500 | 0.98 | 0.1 |
参数 | 数值 | |
0.995 | ||
Critic网络学习率 | 0.001 | |
Actor网络学习率 | 0.000 5 | |
0.000 1 | ||
0 | ||
0.02 | ||
0.1 | ||
经验回放池大小 | 50 000 |
表 2 所提方法参数设置
Table 2 Parameter settings of the proposed method
参数 | 数值 | |
0.995 | ||
Critic网络学习率 | 0.001 | |
Actor网络学习率 | 0.000 5 | |
0.000 1 | ||
0 | ||
0.02 | ||
0.1 | ||
经验回放池大小 | 50 000 |
算法 | 离线训练时间/h | 在线测试时间/s | ||
PD-DDPG | 12.638 | 0.223 | ||
DDPG( | 11.050 | 0.236 | ||
DDPG( | 10.626 | 0.229 | ||
DDPG( | 10.462 | 0.232 |
表 3 不同算法的训练和测试时间
Table 3 Training and testing time of different algorithms
算法 | 离线训练时间/h | 在线测试时间/s | ||
PD-DDPG | 12.638 | 0.223 | ||
DDPG( | 11.050 | 0.236 | ||
DDPG( | 10.626 | 0.229 | ||
DDPG( | 10.462 | 0.232 |
1 | 王鹤, 王钲淇, 韩皓, 等. 使用蒙特卡罗逐时估算模型的住宅配电网光伏准入容量研究[J]. 东北电力大学学报, 2023, 43 (1): 9- 19, 2, 99. |
WANG He, WANG Zhengqi, HAN Hao, et al. Research on photovoltaic hosting capacity of residential distribution network based on Monte Carlo hourly estimation framework[J]. Journal of Northeast Electric Power University, 2023, 43 (1): 9- 19, 2, 99. | |
2 | 丁琦欣, 覃洪培, 万灿, 等. 基于机会约束规划的配电网分布式光伏承载能力评估[J]. 东北电力大学学报, 2022, 42 (6): 28- 38. |
DING Qixin, QIN Hongpei, WAN Can, et al. Chance-constrained optimization-based distributed photovoltaic hosting capacity assessment of distribution networks[J]. Journal of Northeast Electric Power University, 2022, 42 (6): 28- 38. | |
3 | 杨亘烨, 孙荣富, 丁然, 等. 计及光伏多状态调节能力的配电网多时间尺度电压优化[J]. 中国电力, 2022, 55 (3): 105- 114. |
YANG Genye, SUN Rongfu, DING Ran, et al. Multi-time scale reactive power and voltage optimization of distribution network considering photovoltaic multi state regulation capability[J]. Electric Power, 2022, 55 (3): 105- 114. | |
4 | 白晶, 金广厚, 孙鹤林, 等. 高渗透光伏配电网第三方主体调压辅助服务补偿与获取[J]. 中国电力, 2023, 56 (4): 95- 103. |
BAI Jing, JIN Guanghou, SUN Helin, et al. Third-party entity voltage regulation ancillary service compensation and procurement in distribution networks with high-penetration PV[J]. Electric Power, 2023, 56 (4): 95- 103. | |
5 | 黄南天, 郭玉, 赵暄远. 计及辐照区间划分的含光伏电源配电网源-荷联合场景生成[J]. 东北电力大学学报, 2023, 43 (5): 78- 84. |
HUANG Nantian, GUO Yu, ZHAO Xuanyuan. Combined source-load scenario generation for PV-containing distribution networks with calculation and irradiation interval classification[J]. Journal of Northeast Electric Power University, 2023, 43 (5): 78- 84. | |
6 | 祁晓婧. 计及不确定性的主动配电网有功无功联合优化调度技术研究[D]. 南京: 东南大学, 2019. |
QI Xiaojing. Research on joint optimal dispatch technology of active and reactive power in active distribution networks considering uncertainty[D]. Nanjing: Southeast University, 2019. | |
7 | 王耀翔, 戴朝波, 杨志昌, 等. 考虑风电机组无功潜力的风电场无功电压控制策略[J]. 电力系统保护与控制, 2022, 50 (24): 83- 90. |
WANG Yaoxiang, DAI Chaobo, YANG Zhichang, et al. Voltage control strategy for a wind farm considering the reactive capability of DFIGs[J]. Power System Protection and Control, 2022, 50 (24): 83- 90. | |
8 | 马君亮, 王智冬, 张述铭. 考虑县域光伏潜力评估的源网荷储协同规划[J]. 东北电力大学学报, 2023, 43 (3): 82- 90. |
MA Junliang, WANG Zhidong, ZHANG Shuming. Collaborative planning of source-grid-load-storage considering County PV potential assessment[J]. Journal of Northeast Electric Power University, 2023, 43 (3): 82- 90. | |
9 | 马跃, 孟润泉, 魏斌, 等. 考虑阶梯式碳交易机制的微电网两阶段鲁棒优化调度[J]. 电力系统保护与控制, 2023, 51 (10): 22- 33. |
MA Yue, MENG Runquan, WEI Bin, et al. Two-stage robust optimal scheduling of a microgrid with a stepped carbon trading mechanism[J]. Power System Protection and Control, 2023, 51 (10): 22- 33. | |
10 | 孙端航, 李本新. 考虑风电不确定性的电网状态检修策略[J]. 东北电力大学学报, 2023, 43 (4): 65- 73. |
SUN Duanhang, LI Benxin. Condition-based maintenance scheduling for power transmission system considering wind power uncertainty[J]. Journal of Northeast Electric Power University, 2023, 43 (4): 65- 73. | |
11 | 朱建昆, 高红均, 贺帅佳, 等. 考虑VSC与光-储-充协同配置的交直流混合配电网规划[J]. 智慧电力, 2023, 51 (11): 7- 14. |
ZHU Jiankun, GAO Hongjun, HE Shuaijia, et al. AC-DC hybrid distribution network planning considering VSC and photovoltaic-storage-charging coordinated configuration[J]. Smart Power, 2023, 51 (11): 7- 14. | |
12 | 李笑竹, 王维庆. 基于贝叶斯理论的分布鲁棒优化在储能配置上的应用[J]. 电网技术, 2022, 46 (10): 4001- 4011. |
LI Xiaozhu, WANG Weiqing. Application of distributed robust optimization based on bayesian theory in allocation of energy storage[J]. Power System Technology, 2022, 46 (10): 4001- 4011. | |
13 | 徐澄莹, 朱旭, 窦真兰, 等. 基于数据驱动鲁棒优化的用户侧综合能源舱低碳规划[J]. 电力建设, 2022, 43 (12): 27- 36. |
XU Chengying, ZHU Xu, DOU Zhenlan, et al. Research on low carbon planning based on data driven robust optimization for user-side integrated energy module[J]. Electric Power Construction, 2022, 43 (12): 27- 36. | |
14 |
KOU P, LIANG D L, WANG C, et al. Safe deep reinforcement learning-based constrained optimal control scheme for active distribution networks[J]. Applied Energy, 2020, 264, 114772.
DOI |
15 |
CHU Y F, WEI Z N, FANG X C, et al. A multiagent federated reinforcement learning approach for plug-In electric vehicle fleet charging coordination in a residential community[J]. IEEE Access, 2022, 10, 98535- 98548.
DOI |
16 | 戴武昌, 刘艾冬, 申鑫, 等. 基于MADDPG算法的家用电动汽车集群充放电行为在线优化[J]. 东北电力大学学报, 2021, 41 (5): 80- 89. |
DAI Wuchang, LIU Aidong, SHEN Xin, et al. Online optimization of charging and discharging behavior of household electric vehicle cluster based on MADDPG algorithm[J]. Journal of Northeast Electric Power University, 2021, 41 (5): 80- 89. | |
17 | HOU S R, SALAZAR E M, VERGARA P P, et al. Performance comparison of deep RL algorithms for energy systems optimal scheduling[C]//2022 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT-Europe). Novi Sad, Serbia. IEEE, 2022: 1–6. |
18 |
LIU H T, WU W C. Two-stage deep reinforcement learning for inverter-based volt-VAR control in active distribution networks[J]. IEEE Transactions on Smart Grid, 2021, 12 (3): 2037- 2047.
DOI |
19 |
GAO Y Q, WANG W, SHI J, et al. Batch-constrained reinforcement learning for dynamic distribution network reconfiguration[J]. IEEE Transactions on Smart Grid, 2020, 11 (6): 5357- 5369.
DOI |
20 | LILLICRAP T P, HUNT J J, PRITZEL A, et al. Continuous control with deep reinforcement learning[C]//4th International Conference on Learning Representations. San Juan, 2016. |
21 |
LI H P, HE H B. Learning to operate distribution networks with safe deep reinforcement learning[J]. IEEE Transactions on Smart Grid, 2022, 13 (3): 1860- 1872.
DOI |
22 | 季颖, 王建辉. 基于深度强化学习的微电网在线优化调度[J]. 控制与决策, 2022, 37 (7): 1675- 1684. |
JI Ying, WANG Jianhui. Microgrid online optimal dispatch based on deep reinforcement learning[J]. Control and Decision-making, 2022, 37 (7): 1675- 1684. | |
23 | 兰飞, 林立成, 黎静华. 基于改进变分模态分解和信息融合的故障选线[J]. 东北电力大学学报, 2022, 42 (5): 1- 14. |
LAN Fei, LIN Licheng, LI Jinghua. Fault line selection based on improved variational mode decomposition and information fusion[J]. Journal of Northeast Electric Power University, 2022, 42 (5): 1- 14. | |
24 | DING Y, LAVAEI J. Provably efficient primal-dual reinforcement learning for cmdps with non-stationary objectives and constraints[C]// Proceedings of the AAAI Conference on Artificial Intelligence. 2023, 37(6): 7396–7404. |
25 | PASZKE A, GROSS S, MASSA F, et al. Pytorch: an imperative style, high-performance deep learning library[J]. Advances in Neural Information Processing Systems, 2019, 32, 8024- 8035. |
[1] | 凡鹏飞, 李宝琴, 侯江伟, 李嵘, 宋崇明, 林凯骏. 配电网分布式电源经济可承载力评估[J]. 中国电力, 2024, 57(7): 196-202. |
[2] | 王家武, 赵佃云, 刘长锋, 陈康, 张玉敏. 基于目标级联法的多主体主动配电网自治协同优化[J]. 中国电力, 2024, 57(7): 214-226. |
[3] | 龚逊东, 郭维嘉, 杨晨, 周力, 董晓峰, 朱俊澎. 基于动态孤岛的主动配电网多阶段故障恢复策略[J]. 中国电力, 2024, 57(1): 158-166. |
[4] | 岳园园, 王主丁, 王辉, 罗璇, 苏舟, 惠子珈. 考虑设备调节成本的主动配电网日前优化调度[J]. 中国电力, 2023, 56(8): 136-142. |
[5] | 田宇, 黄婧, 谢枭, 王若昕, 沈丹青, 何丽娜, 杨凯帆, 陈汝科. 主动配电网无功补偿和OLTC鲁棒多目标优化配置[J]. 中国电力, 2023, 56(3): 94-99. |
[6] | 周蠡, 熊川羽, 柯方超, 李智威, 张洪, 陈然, 刘万方, 喻亚洲, 任丽琴. 基于区块链和禀赋效应的主动配电网经济运行方法[J]. 中国电力, 2023, 56(12): 58-68. |
[7] | 茹秋实, 米雪峰, 宋志刚, 刘金涛, 雷霞. 考虑储能-智能软开关的主动配电网混合时间尺度鲁棒优化[J]. 中国电力, 2022, 55(9): 129-139. |
[8] | 张进, 胡存刚, 芮涛. 基于交替方向乘子法的主动配电网日前两阶段分布式优化调度策略[J]. 中国电力, 2021, 54(5): 91-100. |
[9] | 翁嘉明, 刘东, 安宇, 殷浩洋, 黄植, 秦汉. 馈线功率控制下的主动配电网信息物理风险演化分析[J]. 中国电力, 2021, 54(3): 13-22. |
[10] | 徐艳春, 赵彩彩, 孙思涵, MI Lu. 基于改进LMD和能量相对熵的主动配电网故障定位方法[J]. 中国电力, 2021, 54(11): 133-143. |
[11] | 邢海军, 谢宝江, 秦建, 罗扬帆, 娄伟明. 考虑CVR的主动配电网优化运行方法[J]. 中国电力, 2021, 54(11): 76-81. |
[12] | 赵晋泉, 张强, 方嵩, 彭嵩. 最小化用户停电损失的主动配电网黑启动分区优化策略[J]. 中国电力, 2020, 53(7): 114-121. |
[13] | 何英静, 沈舒仪, 何东, 张靖瑞, 李帆, 朱克平, 王松岩. 兼顾网损优化效益与投资成本的SNOP容量规划方法[J]. 中国电力, 2020, 53(4): 32-40. |
[14] | 张伊, 陈启鑫, 夏清, 施磊, 喻乐, 谢旭, 张晶. 基于分布因子法的主动配电网成本分摊方法[J]. 中国电力, 2020, 53(4): 13-21. |
[15] | 李昱佳, 董川. 基于两种仿生算法的低碳主动配电网规划[J]. 中国电力, 2017, 50(4): 66-70. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||