中国电力 ›› 2024, Vol. 57 ›› Issue (11): 183-190.DOI: 10.11930/j.issn.1004-9649.202405020
薛松萍1(), 高德荃2, 赵子岩2, 林彧茜3, 广泽晶2, 张大卫1(
)
收稿日期:
2024-05-08
出版日期:
2024-11-28
发布日期:
2024-11-27
作者简介:
薛松萍(2001—),男,硕士研究生,从事电力通信调度运行管理研究,E-mail:1847884064@qq.com基金资助:
Songping XUE1(), Dequan GAO2, Ziyan ZHAO2, Yuqian LIN3, Zejing GUANG2, Dawei ZHANG1(
)
Received:
2024-05-08
Online:
2024-11-28
Published:
2024-11-27
Supported by:
摘要:
电力通信网负责传递控制指令、收集状态数据,对保障电网的稳定运作至关重要。针对电力通信网络中多约束条件下的智能路由问题,提出了一种结合消息传递神经网络(message passing neural network,MPNN)与深度强化学习算法的智能路由算法。通过Tensor flow框架实现,在Open AI Gym构建的模拟环境进行验证。算法在超过
薛松萍, 高德荃, 赵子岩, 林彧茜, 广泽晶, 张大卫. 基于业务差异化传输需求下的电力通信网路由算法[J]. 中国电力, 2024, 57(11): 183-190.
Songping XUE, Dequan GAO, Ziyan ZHAO, Yuqian LIN, Zejing GUANG, Dawei ZHANG. Routing Algorithm for Power Communication Networks Based on Serivce Differentiated Transmission Requirements[J]. Electric Power, 2024, 57(11): 183-190.
业务名称 | 奖励值 | |
Ⅰ类生产控制业务 | 0.125 | |
Ⅱ类生产控制业务 | 0.500 | |
Ⅲ类生产控制业务 | 1.000 |
表 1 3类业务的归一化奖励
Table 1 Normalized reward for the three services
业务名称 | 奖励值 | |
Ⅰ类生产控制业务 | 0.125 | |
Ⅱ类生产控制业务 | 0.500 | |
Ⅲ类生产控制业务 | 1.000 |
业务名称 | 可靠性要求 | |
Ⅰ类生产控制业务 | 0.90 | |
Ⅱ类生产控制业务 | 0.88 | |
Ⅲ类生产控制业务 | 0.86 |
表 2 不同业务的可靠性要求
Table 2 Reliability requirements for different services
业务名称 | 可靠性要求 | |
Ⅰ类生产控制业务 | 0.90 | |
Ⅱ类生产控制业务 | 0.88 | |
Ⅲ类生产控制业务 | 0.86 |
业务名称 | 传输距离限制/km | |
Ⅰ类生产控制业务 | ||
Ⅱ类生产控制业务 | 950 | |
Ⅲ类生产控制业务 | 900 |
表 3 不同业务的传输距离限制
Table 3 Transmission distance limitations for different services
业务名称 | 传输距离限制/km | |
Ⅰ类生产控制业务 | ||
Ⅱ类生产控制业务 | 950 | |
Ⅲ类生产控制业务 | 900 |
超参数名称 | 超参数值 | |
链路隐藏状态link_state_dim | 32 | |
学习率 | ||
消息传递次数T | 4 | |
读出层层数readout_layers | 3 | |
读出层神经元个数readout_units | 35 | |
一次读出的数据个数batch_size | 32 | |
丢弃层丢弃概率dropout_rate | 0.01 |
表 4 训练时的超参数表
Table 4 Table of hyperparameters during training
超参数名称 | 超参数值 | |
链路隐藏状态link_state_dim | 32 | |
学习率 | ||
消息传递次数T | 4 | |
读出层层数readout_layers | 3 | |
读出层神经元个数readout_units | 35 | |
一次读出的数据个数batch_size | 32 | |
丢弃层丢弃概率dropout_rate | 0.01 |
1 | 赵子岩, 刘建明. 基于业务风险均衡度的电力通信网可靠性评估算法[J]. 电网技术, 2011, 35 (10): 209- 213. |
ZHAO Ziyan, LIU Jianming. A new service risk balancing based method to evaluate reliability of electric power communication network[J]. Power System Technology, 2011, 35 (10): 209- 213. | |
2 |
夏超鹏. 泛在电力物联网在电力市场应用中的展望[J]. 发电技术, 2020, 41 (2): 142- 149.
DOI |
XIA Chaopeng. Prospect of ubiquitous power Internet of Things in electricity market[J]. Power Generation Technology, 2020, 41 (2): 142- 149.
DOI |
|
3 | 王勇, 张明, 马洲俊, 等. 电力线信道通信特性影响因素分析[J]. 电力科学与技术学报, 2021, 36 (3): 157- 164, 173. |
WANG Yong, ZHANG Ming, MA Zhoujun, et al. Analysis of the factors influencing the communication characteristics of power line channel[J]. Journal of Electric Power Science and Technology, 2021, 36 (3): 157- 164, 173. | |
4 | 王志强, 吴庆, 张拯, 等. 基于异常分析的电力信息通信系统运维策略[J]. 陕西电力, 2016, 44 (4): 84- 87. |
WANG Zhiqiang, WU Qing, ZHANG Zheng, et al. Maintenance strategy of power grid information and telecommunication system based on abnormal analysis[J]. Shanxi Electric Power, 2016, 44 (4): 84- 87. | |
5 | 皮志勇, 朱益, 廖玄, 等. 基于深度学习的智能变电站通信链路故障定位方法[J]. 中国电力, 2023, 56 (7): 136- 145. |
PI Zhiyong, ZHU Yi, LIAO Xuan, et al. Fault location method for communication link in smart substation based on deep learning[J]. Electric Power, 2023, 56 (7): 136- 145. | |
6 | 皮志勇, 朱益, 廖玄, 等. 智能变电站多信息融合建模的通信链路故障定位方法[J]. 中国电力, 2023, 56 (8): 207- 215. |
PI Zhiyong, ZHU Yi, LIAO Xuan, et al. Fault location method for communication link with multi-information fusion modeling of smart substation[J]. Electric Power, 2023, 56 (8): 207- 215. | |
7 | 何天玲, 蔡立波. 耦合电网业务约束条件的电力通信故障检修辅助决策的实现[J/OL]. 中国电力, 2024: 1–8. (2024-03-21). https://kns.cnki.net/kcms/detail/11.3265.tm.20240320.1018.002.html. |
HE Tianling, CAI Libo. Implementation of power communication fault and maintenance aided decision-making coupled with power network service constraints[J/OL]. Electric Power, 2024: 1–8. (2024-03-21). https://kns.cnki.net/kcms/detail/11.3265.tm.20240320.1018.002.html. | |
8 | 李彬, 卢超, 景栋盛, 等. 负载与风险联合均衡的电力通信网路由优化算法[J]. 中国电机工程学报, 2019, 39 (9): 2713- 2722. |
LI Bin, LU Chao, JING Dongsheng, et al. An optimized routing algorithm with load and risk joint balance in electric communication network[J]. Proceedings of the CSEE, 2019, 39 (9): 2713- 2722. | |
9 | 崔力民, 孙静月, 李珊君, 等. 一种基于熵的电力通信网络业务资源均匀分配算法[J]. 电网技术, 2017, 41 (9): 3066- 3073. |
CUI Limin, SUN Jingyue, LI Shanjun, et al. An algorithm for business resource uniform distribution in power communication network based on entropy[J]. Power System Technology, 2017, 41 (9): 3066- 3073. | |
10 |
顿聪颖, 金凤林, 谭诗翰, 等. 基于负载均衡的低轨卫星网络动态路由算法[J]. 无线电工程, 2022, 52 (5): 790- 798.
DOI |
DUN Congying, JIN Fenglin, TAN Shihan, et al. Dynamic routing algorithm for low orbit satellite network based on load balancing[J]. Radio Engineering, 2022, 52 (5): 790- 798.
DOI |
|
11 |
孙严智, 刘旋, 刘宇明, 等. 遗传算法电力通信网关键业务备选路由配置[J]. 云南电力技术, 2017, 45 (1): 113- 117.
DOI |
SUN Yanzhi, LIU Xuan, LIU Yuming, et al. Research on key service backup routing method based on genetic algorithm in power communication network[J]. Yunnan Electric Power, 2017, 45 (1): 113- 117.
DOI |
|
12 | 王素红, 唐煜星, 郭文豪, 等. 考虑优先级的智能电网业务调度与资源分配方案[J]. 南方电网技术, 2024, 18 (4): 59- 70, 79. |
WANG Suhong, TANG Yuxing, GUO Wenhao, et al. Service scheduling and resource allocation scheme of smart grid considering priority[J]. Southern Power System Technology, 2024, 18 (4): 59- 70, 79. | |
13 | 刘思放. 电力需求响应业务传输机制及路由优化策略研究[D]. 北京: 华北电力大学, 2020. |
LIU Sifang. Research on transmission mechanism and routing optimized strategy for power demand response service[D]. Beijing: North China Electric Power University, 2020. | |
14 |
曾瑛, 李伟坚, 陈媛媛, 等. 基于业务优先级的电力调度数据网拥塞规避算法[J]. 电力系统保护与控制, 2014, 42 (2): 49- 55.
DOI |
ZENG Ying, LI Weijian, CHEN Yuanyuan, et al. A congestion avoidance algorithm based on the service priority for electric power dispatching data network[J]. Power System Protection and Control, 2014, 42 (2): 49- 55.
DOI |
|
15 |
ALMASAN P, SUÁREZ-VARELA J, RUSEK K, et al. Deep reinforcement learning meets graph neural networks: Exploring a routing optimization use case[J]. Computer Communications, 2022, 196, 184- 194.
DOI |
16 |
YU C H, LAN J L, GUO Z H, et al. DROM: optimizing the routing in software-defined networks with deep reinforcement learning[J]. IEEE Access, 2018, 6, 64533- 64539.
DOI |
17 |
HARTERT R, VISSICCHIO S, SCHAUS P, et al. A declarative and expressive approach to control forwarding paths in carrier-grade networks[J]. ACM SIGCOMM Computer Communication Review, 2015, 45 (4): 15- 28.
DOI |
18 |
FRANCOIS P, FILSFILS C, EVANS J, et al. Achieving sub-second IGP convergence in large IP networks[J]. ACM SIGCOMM Computer Communication Review, 2005, 35 (3): 35- 44.
DOI |
19 | JAIN S, KUMAR A, MANDAL S, et al. B4: Experience with a globally-deployed software defined WAN[J]. ACM SIGCOMM Computer Communication Review, 2013, 43 (4): 3- 14. |
20 | 何天玲. 基于业务N-2的电力通信网可靠性评估方法研究[J]. 电力信息与通信技术, 2021, 19 (2): 36- 43. |
HE Tianling. Research on reliability evaluation method of power communication network based on service N-2[J]. Electric Power Information and Communication Technology, 2021, 19 (2): 36- 43. | |
21 | 王铮澄, 周艳真, 郭庆来, 等. 考虑电力系统拓扑变化的消息传递图神经网络暂态稳定评估[J]. 中国电机工程学报, 2021, 41 (7): 2341- 2349. |
WANG Zhengcheng, ZHOU Yanzhen, GUO Qinglai, et al. Transient stability assessment of power system considering topological change: a message passing neural network-based approach[J]. Proceedings of the CSEE, 2021, 41 (7): 2341- 2349. | |
22 |
刘全, 翟建伟, 章宗长, 等. 深度强化学习综述[J]. 计算机学报, 2018, 41 (1): 1- 27.
DOI |
LIU Quan, ZHAI Jianwei, ZHANG Zongchang, et al. A survey on deep reinforcement learning[J]. Chinese Journal of Computers, 2018, 41 (1): 1- 27.
DOI |
|
23 | MNIH V, KAVUKCUOGLU K, SILVER D, et al. Playing atari with deep reinforcement learning[J]. ArXiv e-Prints, 2013: arXiv: 1312.5602. |
24 | ABADI M, BARHAM P, CHEN J, et al. TensorFlow: a system for large-scale machine learning[C]//12th USENIX symposium on operating systems design and implementation (OSDI 16). 2016: 265–283. |
25 |
HEI X J, ZHANG J, BENSAOU B, et al. Wavelength converter placement in least-load-routing-based optical networks using genetic algorithms[J]. Journal of Optical Networking, 2004, 3 (5): 363.
DOI |
[1] | 曾仪, 周毅, 陆继翔, 周良才, 唐宁恺, 李红. 基于多智能体安全深度强化学习的电压控制[J]. 中国电力, 2025, 58(2): 111-117. |
[2] | 何天玲, 蔡立波. 耦合电网业务约束条件的电力通信故障检修辅助决策的实现[J]. 中国电力, 2024, 57(12): 178-187. |
[3] | 张超, 赵冬梅, 季宇, 张颖. 基于改进深度Q网络的虚拟电厂实时优化调度[J]. 中国电力, 2024, 57(1): 91-100. |
[4] | 石文喆, 李冰洁, 尤培培, 张泠. 基于深度强化学习的建筑能源系统优化策略[J]. 中国电力, 2023, 56(6): 114-122. |
[5] | 宋伟业, 刘灵玥, 阎洁, 王航宇, 何书凯, 韩爽, 王明辉, 刘永前. 基于深度强化学习的海上风电集群自进化功率平滑控制方法[J]. 中国电力, 2023, 56(3): 36-46. |
[6] | 张淑兴, 马驰, 杨志学, 王尧, 吴昊, 任洲洋. 基于深度确定性策略梯度算法的风光储系统联合调度策略[J]. 中国电力, 2023, 56(2): 68-76. |
[7] | 周庆锋, 王思淳, 李德鑫, 刘佳琪, 李同. 基于DDPG的风电场动态参数智能校核知识学习模型[J]. 中国电力, 2022, 55(5): 32-38. |
[8] | 杨朋朋, 王蓓蓓, 胥鹏, 王高琴, 郑亚先. 不完全信息下基于深度双Q网络的发电商三段式竞价策略[J]. 中国电力, 2021, 54(11): 47-58. |
[9] | 贾惠彬, 盖永贺, 李保罡, 郑宏达. 基于强化学习的电力通信网故障恢复方法[J]. 中国电力, 2020, 53(6): 34-40. |
[10] | 汪洋, 高晗星, 周生平, 王智慧, 何玉钧. 融合拓扑及业务特性的电力通信网关键节点识别[J]. 中国电力, 2018, 51(10): 111-118. |
[11] | 王玉东, 刘伟, 刘洁, 李威, 黄兴, 孟威. P-OTN技术在电力骨干通信网的应用及多业务承载策略研究[J]. 中国电力, 2017, 50(10): 28-34. |
[12] | 谢迎军, 王玉亭, 李炜, 丁慧霞, 王智慧, 张世先, 周阮坤. 电力企业通信网运行质量评估指标体系[J]. 中国电力, 2017, 50(10): 22-27. |
[13] | 曹原, 赵永利, 郁小松, 张杰. 量子密钥分发驱动安全电力通信网络体系架构[J]. 中国电力, 2017, 50(10): 8-11. |
[14] | 王一蓉,王艳茹,张荣博,武志栋. 基于SDN构建高性能、易扩展的电力通信网[J]. 中国电力, 2016, 49(10): 106-110. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||