[1] 时智勇, 王彩霞, 李琼慧. “十四五”中国海上风电发展关键问题[J]. 中国电力, 2020, 53(7): 8–17 SHI Zhiyong, WANG Caixia, LI Qionghui. Key issues of China's offshore wind power development in the “14 th five-year plan”[J]. Electric Power, 2020, 53(7): 8–17 [2] 房方, 梁栋炀, 刘亚娟, 等. 海上风电智能控制与运维关键技术[J]. 发电技术, 2022, 43(2): 175–185 FANG Fang, LIANG Dongyang, LIU Yajuan, et al. Key technologies for intelligent control and operation and maintenance of offshore wind power[J]. Power Generation Technology, 2022, 43(2): 175–185 [3] 林俐, 朱晨宸, 郑太一, 等. 风电集群有功功率控制及其策略[J]. 电力系统自动化, 2014, 38(14): 9–16 LIN Li, ZHU Chenchen, ZHENG Taiyi, et al. Active power control of wind farm cluster and its strategy[J]. Automation of Electric Power Systems, 2014, 38(14): 9–16 [4] 鲁宗相, 叶一达, 郭莉, 等. 电力电子化电力系统的调频挑战与多层级协调控制框架[J]. 中国电力, 2019, 52(4): 8–17,110 LU Zongxiang, YE Yida, GUO Li, et al. Frequency regulation challenge of power electronics dominated power systems and its new multi-level coordinated control framework[J]. Electric Power, 2019, 52(4): 8–17,110 [5] 樊新东, 杨秀媛, 金鑫城, 等. 风电场有功功率控制综述[J]. 发电技术, 2018, 39(3): 268–276 FAN Xindong, YANG Xiuyuan, JIN Xincheng. An overview of active power control in wind farms[J]. Power Generation Technology, 2018, 39(3): 268–276 [6] 吴涛, 刘立红, 王岱岚, 等. 风电场智能化远程集控系统设计[J]. 中国电力, 2018, 51(4): 161–167 WU Tao, LIU Lihong, WANG Dailan. Design of remote centralized intelligent monitoring system for wind farms[J]. Electric Power, 2018, 51(4): 161–167 [7] YE L, ZHANG C H, TANG Y, et al. Hierarchical model predictive control strategy based on dynamic active power dispatch for wind power cluster integration[J]. IEEE Transactions on Power Systems, 2019, 34(6): 4617–4629. [8] 施贵荣, 孙荣富, 徐海翔, 等. 大规模集群可再生能源有功分层协调控制策略[J]. 电网技术, 2018, 42(7): 2160–2167 SHI Guirong, SUN Rongfu, XU Haixiang, et al. Active power stratification coordination control strategy for large-scale cluster of renewable energy[J]. Power System Technology, 2018, 42(7): 2160–2167 [9] MA S K, GENG H, YANG G, et al. Clustering-based coordinated control of large-scale wind farm for power system frequency support[J]. IEEE Transactions on Sustainable Energy, 2018, 9(4): 1555–1564. [10] KHALID M, SAVKIN A V. A model predictive control approach to the problem of wind power smoothing with controlled battery storage[J]. Renewable Energy, 2009, 35(7): 1520–1526. [11] 鹿婷, 贾继超, 彭晓涛. 一种考虑经济调度的风电场储能控制策略[J]. 分布式能源, 2019, 4(3): 40–49 LU Ting, JIA Jichao, PENG Xiaotao. An energy storage control strategy for wind farm considering economic dispatching[J]. Distributed Energy, 2019, 4(3): 40–49 [12] 席裕庚, 李德伟, 林姝. 模型预测控制-现状与挑战[J]. 自动化学报, 2013, 39(3): 222–236 XI Yugeng, LI Dewei, LIN Shu. Model predictive control-status and challenges[J]. Acta Automatica Sinica, 2013, 39(3): 222–236 [13] GAO X D, MENG K, DONG Z Y, et al. Cooperation-driven distributed control scheme for large-scale wind farm active power regulation[J]. IEEE Transactions on Energy Conversion, 2017, 32(3): 1240–1250. [14] 武晗, 鲁宗相, 白恺, 等. 风光储联合电站有功控制的响应迟滞“拖尾现象”分析与改进[J]. 电网技术, 2017, 41(4): 1068–1076 WU Han, LU Zongxiang, BAI Kai, et al. Analysis and optimization of ‘tailing phenomenon’ in active power control of hybrid wind-PV-ES power system[J]. Power System Technology, 2017, 41(4): 1068–1076 [15] 黄鹏翔, 周云海, 徐飞, 等. 基于灵活性裕度的含风电电力系统源荷储协调滚动调度[J]. 中国电力, 2020, 53(11): 78–88 HUANG Pengxiang, ZHOU Yunhai, XU Fei, et al. Source-load-storage coordinated rolling dispatch for wind power integrated power system based on flexibility margin[J]. Electric Power, 2020, 53(11): 78–88 [16] 仲悟之, 李梓锋, 肖洋, 等. 高渗透联网风电集群有功分层递阶控制策略[J]. 电网技术, 2018, 42(6): 1868–1875 ZHONG Wuzhi, LI Zifeng, XIAO Yang, et al. Active hierarchical progressive control strategy of highly penetrated networked wind power cluster[J]. Power System Technology, 2018, 42(6): 1868–1875 [17] 张斌, 左剑, 周年光, 等. 考虑变桨机组动态响应的风电场闭环有功控制方法[J]. 电力系统及其自动化学报, 2017, 29(7): 136–143 ZHANG Bin, ZUO Jian, ZHOU Nianguang, et al. Closed-loop active power control method for wind farm considering the dynamic response of variable-pitch wind turbine[J]. Proceedings of the CSU-EPSA, 2017, 29(7): 136–143 [18] 张晋华, 朱悦榕, 李旭强, 等. 考虑风电不确定性的含海上风电场电力系统优化调度策略研究[J]. 分布式能源, 2021, 6(5): 33–43 ZHANG Jinhua, ZHU Yuerong, LI Xuqiang, et al. Optimization scheduling strategy of offshore wind farm power system considering wind power uncertainty[J]. Distributed Energy, 2021, 6(5): 33–43 [19] 葛晓琳, 郝广东, 夏澍, 等. 高比例风电系统的优化调度方法[J]. 电网技术, 2019, 43(2): 390–400 GE Xiaolin, HAO Guangdong, XIA Shu, et al. An optimal system scheduling method with high proportion of wind power[J]. Power System Technology, 2019, 43(2): 390–400 [20] 朱瑛, 高云波, 臧海祥, 等. 风电机组输出功率平滑技术综述[J]. 电力系统自动化, 2018, 42(18): 182–191 ZHU Ying, GAO Yunbo, ZANG Haixiang, et al. Review of output power smoothing technologies for wind turbine[J]. Automation of Electric Power Systems, 2018, 42(18): 182–191 [21] 刘军, 张彬彬, 赵晨聪. 基于数据驱动的风电场有功功率分配算法[J]. 电力系统自动化, 2019, 43(17): 125–131 LIU Jun, ZHANG Binbin, ZHAO Chencong. Data-driven based active power distribution algorithm in wind farm[J]. Automation of Electric Power Systems, 2019, 43(17): 125–131 [22] 路朋, 叶林, 裴铭, 等. 风电集群有功功率模型预测协调控制策略[J]. 中国电机工程学报, 2021, 41(17): 5887–5900 LU Peng, YE Lin, PEI Ming, et al. Coordinated control strategy for active power of wind power cluster based on model predictive control[J]. Proceedings of the CSEE, 2021, 41(17): 5887–5900 [23] 陈晓光, 杨秀媛, 王镇林, 等. 考虑多目标优化模型的风电场储能容量配置方案[J]. 发电技术, 2022, 43(5): 718–730 CHEN Xiaoguang, YANG Xiuyuan, WANG Zhenlin, et al. Energy storage capacity allocation scheme of wind farm considering multi-objective optimization model[J]. Power System Technology:, 2022, 43(5): 718–730 [24] SULTANA W R, SAHOO S K, SUKCHAI S, et al. A review on state of art development of model predictive control for renewable energy applications[J]. Renewable & sustainable energy reviews, 2017, 76: 391–406. [25] LIAO S Y, XU J, SUN Y Z, et al. Control of energy-intensive load for power smoothing in wind power plants[J]. IEEE Transactions on Power Systems, 2018, 33(6): 6142–6154. [26] 张中泉, 刘晓光, 钟天宇. 风电机组有功功率集散优化控制系统研究[J]. 发电技术, 2018, 39(6): 574–579 ZHANG Zhongquan, LIU Xiaoguang, ZHONG Tianyu. Research on optimal distributed control system of active power of wind turbine generators[J]. Power Generation Technology, 2018, 39(6): 574–579 [27] YE Y J, QIU D W, SUN M Y, et al. Deep reinforcement learning for strategic bidding in electricity markets[J]. IEEE Transactions on Smart Grid, 2020, 11(2): 1343–1355. [28] 张淑兴, 马驰, 杨志学, 等. 基于深度确定性策略梯度算法的风光储系统联合调度策略[J/OL]. 中国电力: 1–9[2022-06-08]. ZHANG Shuxing, MA Chi, YANG Zhixue, et al. Joint dispatch of wind-photovoltaic-storage hybrid system based on deep deterministic policy gradient algorithm [J/OL]. Electric Power: 1–9[2022-06-08]. [29] 孙宏斌, 黄天恩, 郭庆来, 等. 基于仿真大数据的电网智能型超前安全预警技术[J]. 南方电网技术, 2016, 10(3): 42–46 SUN Hongbin, HUANG Tianen, GUO Qinglai, et al. Power grid intelligent security early warning technology based on big simulation data[J]. Southern Power System Technology, 2016, 10(3): 42–46 [30] LIN Z W, CHEN Z, QU C Z, et al. A hierarchical clustering-based optimization strategy for active power dispatch of large-scale wind farm[J]. International Journal of Electrical Power & Energy Systems, 2020, 121: 106155–106163.
|