[1] 林峰, 肖立华, 商浩亮, 等. “双碳”背景下能源互联网数字孪生系统的设计及应用[J]. 电力科学与技术学报, 2022, 37(1): 29–34 LIN Feng, XIAO Lihua, SHANG Haoliang, et al. Design and application of energy Internet digital twin system under the background of “dual carbon”[J]. Journal of Electric Power Science and Technology, 2022, 37(1): 29–34 [2] 童光毅. 基于双碳目标的智慧能源体系构建[J]. 智慧电力, 2021, 49(5): 1–6 TONG Guangyi. Construction of smart energy system based on dual carbon goal[J]. Smart Power, 2021, 49(5): 1–6 [3] 刘雨佳, 樊艳芳, 郝俊伟, 等. 基于碱性电解槽宽功率适应模型的风光氢热虚拟电厂容量配置与调度优化[J]. 电力系统保护与控制, 2022, 50(10): 48–60 LIU Yujia, FAN Yanfang, HAO Junwei, et al. Capacity configuration and optimal scheduling of a wind-photovoltaic-hydrogen-thermal virtual power plant based on a wide range power adaptation strategy for an alkaline electrolyzer[J]. Power System Protection and Control, 2022, 50(10): 48–60 [4] 黄伟捷, 江岳文. 远海风电输电和制氢经济可行性分析[J]. 中国电力, 2022, 55(1): 91–100 HUANG Weijie, JIANG Yuewen. Comparison of economic feasibilites between power transmission and hydrogen production from an offshore wind farm[J]. Electric Power, 2022, 55(1): 91–100 [5] 张运洲, 张宁, 代红才, 等. 中国电力系统低碳发展分析模型构建与转型路径比较[J]. 中国电力, 2021, 54(3): 1–11 ZHANG Yunzhou, ZHANG Ning, DAI Hongcai, et al. Model construction and pathways of low-carbon transition of China’s power system[J]. Electric Power, 2021, 54(3): 1–11 [6] LI H, YAO X L, TACHEGA M A, et al. Technology selection for hydrogen production in China by integrating emergy into life cycle sustainability assessment[J]. Journal of Cleaner Production, 2021, 294: 126303. [7] BAREIß K, DE LA RUA C, MÖCKL M, et al. Life cycle assessment of hydrogen from proton exchange membrane water electrolysis in future energy systems[J]. Applied Energy, 2019, 237: 862–872. [8] MORADI NAFCHI F, BANIASADI E, AFSHARI E, et al. Performance assessment of a solar hydrogen and electricity production plant using high temperature PEM electrolyzer and energy storage[J]. International Journal of Hydrogen Energy, 2018, 43(11): 5820–5831. [9] 张理, 叶斌, 尹晨旭, 等. 风电制氢经济性及发展前景分析[J]. 东北电力技术, 2020, 41(7): 5–9, 37 ZHANG Li, YE Bin, YIN Chenxu, et al. Economy and development prospects analysis of wind power hydrogen production[J]. Northeast Electric Power Technology, 2020, 41(7): 5–9, 37 [10] 李佳蓉, 林今, 邢学韬, 等. 主动配电网中基于统一运行模型的电制氢(P2H)模块组合选型与优化规划[J]. 中国电机工程学报, 2021, 41(12): 4021–4033 LI Jiarong, LIN Jin, XING Xuetao, et al. Technology portfolio selection and optimal planning of power-to-hydrogen(P2H) modules in active distribution network[J]. Proceedings of the CSEE, 2021, 41(12): 4021–4033 [11] SADEGHI S, GHANDEHARIUN S, ROSEN M A. Comparative economic and life cycle assessment of solar-based hydrogen production for oil and gas industries[J]. Energy, 2020, 208: 118347. [12] ZHAO G L, KRAGLUND M R, FRANDSEN H L, et al. Life cycle assessment of H2O electrolysis technologies[J]. International Journal of Hydrogen Energy, 2020, 45(43): 23765–23781. [13] MATUTE G, YUSTA J M, BEYZA J, et al. Multi-state techno-economic model for optimal dispatch of grid connected hydrogen electrolysis systems operating under dynamic conditions[J]. International Journal of Hydrogen Energy, 2021, 46(2): 1449–1460. [14] 沈小军, 聂聪颖, 吕洪. 计及电热特性的离网型风电制氢碱性电解槽阵列优化控制策略[J]. 电工技术学报, 2021, 36(3): 463–472 SHEN Xiaojun, NIE Congying, LÜ Hong. Coordination control strategy of wind power-hydrogen alkaline electrolyzer bank considering electrothermal characteristics[J]. Transactions of China Electrotechnical Society, 2021, 36(3): 463–472 [15] HERNÁNDEZ-GÓMEZ Á, RAMIREZ V, GUILBERT D, et al. Cell voltage static-dynamic modeling of a PEM electrolyzer based on adaptive parameters: development and experimental validation[J]. Renewable Energy, 2021, 163: 1508–1522. [16] GUSAIN D, CVETKOVIĆ M, BENTVELSEN R, et al. Technical assessment of large scale PEM electrolyzers as flexibility service providers[C]//2020 IEEE 29 th International Symposium on Industrial Electronics (ISIE). Delft, Netherlands. IEEE, 2020: 1074–1078. [17] ALIA S M, STARIHA S, BORUP R L. Electrolyzer durability at low catalyst loading and with dynamic operation[J]. Journal of the Electrochemical Society, 2019, 166(15): F1164–F1172. [18] HONSHO Y, NAGAYAMA M, SASAKI K, et al. Durability analysis on PEM water electrolyzers against the voltage fluctuation of wind power[J]. ECS Transactions, 2020, 98(9): 687–698. [19] RAKOUSKY C, REIMER U, WIPPERMANN K, et al. Polymer electrolyte membrane water electrolysis: Restraining degradation in the presence of fluctuating power[J]. Journal of Power Sources, 2017, 342: 38–47. [20] WEIß A, SIEBEL A, BERNT M, et al. Impact of intermittent operation on lifetime and performance of a PEM water electrolyzer[J]. Journal of the Electrochemical Society, 2019, 166(8): F487–F497. [21] PAPAKONSTANTINOU G, ALGARA-SILLER G, TESCHNER D, et al. Degradation study of a proton exchange membrane water electrolyzer under dynamic operation conditions[J]. Applied Energy, 2020, 280: 115911. [22] CHANDESRIS M, MÉDEAU V, GUILLET N, et al. Membrane degradation in PEM water electrolyzer: numerical modeling and experimental evidence of the influence of temperature and current density[J]. International Journal of Hydrogen Energy, 2015, 40(3): 1353–1366. [23] HERNÁNDEZ-GÓMEZ Á, RAMIREZ V, GUILBERT D. Investigation of PEM electrolyzer modeling: electrical domain, efficiency and specific energy consumption[J]. International Journal of Hydrogen Energy, 2020, 45(29): 14625–14639. [24] FANG R M. Life cycle cost assessment of wind power-hydrogen coupled integrated energy system[J]. International Journal of Hydrogen Energy, 2019, 44(56): 29399–29408. [25] LEE H, LEE B, BYUN M, et al. Economic and environmental analysis for PEM water electrolysis based on replacement moment and renewable electricity resources[J]. Energy Conversion and Management, 2020, 224: 113477. [26] ZHANG H, YUAN T J. Optimization and economic evaluation of a PEM electrolysis system considering its degradation in variable-power operations[J]. Applied Energy, 2022, 324: 119760. [27] 张红, 袁铁江, 谭捷, 等. 面向统一能源系统的氢能规划框架[J]. 中国电机工程学报, 2022, 42(1): 83–94 ZHANG Hong, YUAN Tiejiang, TAN Jie, et al. Hydrogen energy system planning framework for unified energy system[J]. Proceedings of the CSEE, 2022, 42(1): 83–94 [28] HE H J, HUANG Y Y, NAKADOMARI A, et al. Potential and economic viability of green hydrogen production from seawater electrolysis using renewable energy in remote Japanese Islands[J]. Renewable Energy, 2023, 202: 1436–1447.
|