中国电力 ›› 2024, Vol. 57 ›› Issue (5): 240-250.DOI: 10.11930/j.issn.1004-9649.202307086
收稿日期:
2023-07-24
出版日期:
2024-05-28
发布日期:
2024-05-16
作者简介:
王帅(1992—),女,硕士,工程师,从事新能源调度运行优化技术研究,E-mail:752833978@qq.com基金资助:
Shuai WANG1(), Yuehui HUANG1(
), Yuanhong NIE2, Siyang LIU1
Received:
2023-07-24
Online:
2024-05-28
Published:
2024-05-16
Supported by:
摘要:
“双碳”目标驱动下,受端电网新能源大规模并网,加之外来电力比重加大,电力平衡难度增加,受端电网实现清洁替代面临多重困难。基于实际运行数据,分析了新能源低出力特性及其与负荷的匹配特性,总结了高比例新能源电力系统面临的关键问题。在此基础上,建立电力系统时序生产模拟模型,基于2030年预测数据的标幺化,设计2060年案例场景,量化分析典型受端省级电网的新能源、煤电和调节资源的配置问题,以及不同新能源发展场景下实现清洁替代的方案,并提出相关措施和建议。
王帅, 黄越辉, 聂元弘, 刘思扬. 基于生产模拟的受端电网新能源发展场景研究[J]. 中国电力, 2024, 57(5): 240-250.
Shuai WANG, Yuehui HUANG, Yuanhong NIE, Siyang LIU. Research on Development Scenario of Renewable Energy in Receiving-End Power Grid Based on Production Simulation[J]. Electric Power, 2024, 57(5): 240-250.
省级电 网数量 | 类别 | 低出力年累 计时长/h | 单次持续时间/h | |||||
最大 | 最小 | |||||||
20 | 风电<10% | 154.25 | 28.75 | 0.25 | ||||
光伏<10% | 2507.75 | 16.75 | 0.25 | |||||
风+光<10% | 1095.00 | 17.50 | 0.25 | |||||
风电<5% | 1.50 | 1.50 | 1.50 | |||||
光伏<5% | 2089.25 | 15.75 | 0.25 | |||||
风+光<5% | 30.25 | 14.50 | 3.25 | |||||
5 | 风电<10% | 1022.50 | 36.75 | 0.25 | ||||
光伏<10% | 2239.50 | 17.75 | 0.25 | |||||
风+光<10% | 2899.25 | 36.25 | 0.25 | |||||
风电<5% | 237.00 | 25.75 | 0.25 | |||||
光伏<5% | 1721.00 | 16.25 | 0.25 | |||||
风+光<5% | 750.75 | 16.00 | 0.25 | |||||
1 | 风电<10% | 2787.75 | 129.75 | 0.25 | ||||
光伏<10% | 1936.75 | 18.75 | 0.25 | |||||
风+光<10% | 2718.00 | 66.50 | 0.25 | |||||
风电<5% | 1507.75 | 82.50 | 0.25 | |||||
光伏<5% | 1444.25 | 15.50 | 0.25 | |||||
风+光<5% | 1512.75 | 18.75 | 0.25 |
表 1 不同地域范围的新能源低出力情况对比
Table 1 Comparison of low output of renewable energy in different regions
省级电 网数量 | 类别 | 低出力年累 计时长/h | 单次持续时间/h | |||||
最大 | 最小 | |||||||
20 | 风电<10% | 154.25 | 28.75 | 0.25 | ||||
光伏<10% | 2507.75 | 16.75 | 0.25 | |||||
风+光<10% | 1095.00 | 17.50 | 0.25 | |||||
风电<5% | 1.50 | 1.50 | 1.50 | |||||
光伏<5% | 2089.25 | 15.75 | 0.25 | |||||
风+光<5% | 30.25 | 14.50 | 3.25 | |||||
5 | 风电<10% | 1022.50 | 36.75 | 0.25 | ||||
光伏<10% | 2239.50 | 17.75 | 0.25 | |||||
风+光<10% | 2899.25 | 36.25 | 0.25 | |||||
风电<5% | 237.00 | 25.75 | 0.25 | |||||
光伏<5% | 1721.00 | 16.25 | 0.25 | |||||
风+光<5% | 750.75 | 16.00 | 0.25 | |||||
1 | 风电<10% | 2787.75 | 129.75 | 0.25 | ||||
光伏<10% | 1936.75 | 18.75 | 0.25 | |||||
风+光<10% | 2718.00 | 66.50 | 0.25 | |||||
风电<5% | 1507.75 | 82.50 | 0.25 | |||||
光伏<5% | 1444.25 | 15.50 | 0.25 | |||||
风+光<5% | 1512.75 | 18.75 | 0.25 |
省级电网数量 | 类别 | 最大 | 最小 | 平均 | ||||
20 | 日负荷峰谷差率/% | 31.2 | 10.6 | 20.8 | ||||
日均负荷率/% | 94.2 | 83.8 | 90.8 | |||||
5 | 日负荷峰谷差率/% | 40.0 | 14.3 | 24.1 | ||||
日均负荷率/% | 93.8 | 79.6 | 89.8 | |||||
1 | 日负荷峰谷差率/% | 39.5 | 9.5 | 19.9 | ||||
日均负荷率/% | 96.0 | 79.3 | 90.9 |
表 2 不同范围的负荷日特性对比
Table 2 Comparison of daily load characteristics in different regions
省级电网数量 | 类别 | 最大 | 最小 | 平均 | ||||
20 | 日负荷峰谷差率/% | 31.2 | 10.6 | 20.8 | ||||
日均负荷率/% | 94.2 | 83.8 | 90.8 | |||||
5 | 日负荷峰谷差率/% | 40.0 | 14.3 | 24.1 | ||||
日均负荷率/% | 93.8 | 79.6 | 89.8 | |||||
1 | 日负荷峰谷差率/% | 39.5 | 9.5 | 19.9 | ||||
日均负荷率/% | 96.0 | 79.3 | 90.9 |
省级电网数量 | 年负荷 峰谷差率/% | 持续时间/h(占比/%) | ||||
>90%最大负荷 | >95%最大负荷 | |||||
20 | 52.7 | 332.25(3.8) | 84.75(0.99) | |||
5 | 66.2 | 391.00(4.5) | 146.00(1.7) | |||
1 | 65.7 | 288.00(3.3) | 86.75(0.97) |
表 3 不同范围的尖峰负荷对比
Table 3 Comparison of peak load in different regions
省级电网数量 | 年负荷 峰谷差率/% | 持续时间/h(占比/%) | ||||
>90%最大负荷 | >95%最大负荷 | |||||
20 | 52.7 | 332.25(3.8) | 84.75(0.99) | |||
5 | 66.2 | 391.00(4.5) | 146.00(1.7) | |||
1 | 65.7 | 288.00(3.3) | 86.75(0.97) |
电源类型 | 占总装机比/% | 标幺值(p.u.) | ||
水电 | 2.8 | 0.040 | ||
煤电 | 33.3 | 0.510 | ||
气电 | 10.1 | 0.150 | ||
核电 | 5.4 | 0.080 | ||
风电 | 12.8 | 0.190 | ||
太阳能 | 23.8 | 0.360 | ||
生物质发电及其他 | 2.6 | 0.034 | ||
抽蓄 | 4.9 | 0.075 | ||
电化学储能 | 4.3 | 0.065 | ||
合计 | 100.0 | 1.524 |
表 4 2030年某受端电网各类电源装机占比情况
Table 4 Installation ratio of various power sources in a receiving-end power grid in 2030
电源类型 | 占总装机比/% | 标幺值(p.u.) | ||
水电 | 2.8 | 0.040 | ||
煤电 | 33.3 | 0.510 | ||
气电 | 10.1 | 0.150 | ||
核电 | 5.4 | 0.080 | ||
风电 | 12.8 | 0.190 | ||
太阳能 | 23.8 | 0.360 | ||
生物质发电及其他 | 2.6 | 0.034 | ||
抽蓄 | 4.9 | 0.075 | ||
电化学储能 | 4.3 | 0.065 | ||
合计 | 100.0 | 1.524 |
储能装机 (p.u.)×时长/h | 新能源装 机(p.u.) | 非化石电量 占比/% | 新能源 利用率/% | 度电碳排放/ (kg·(kW·h)–1) | ||||
无储能 | 1~3 | 存在无法满足电力平衡情况,案例无解 | ||||||
4 | 83.1 | 52 | 0.125 | |||||
5 | 84.8 | 49 | 0.113 | |||||
1×2 | 1~3 | 满足电力平衡,案例有解 | ||||||
4 | 89.4 | 69.5 | 0.084 | |||||
5 | 91.8 | 57.6 | 0.067 |
表 5 新能源和储能优化结果
Table 5 Optimization results of renewable energy and energy storage
储能装机 (p.u.)×时长/h | 新能源装 机(p.u.) | 非化石电量 占比/% | 新能源 利用率/% | 度电碳排放/ (kg·(kW·h)–1) | ||||
无储能 | 1~3 | 存在无法满足电力平衡情况,案例无解 | ||||||
4 | 83.1 | 52 | 0.125 | |||||
5 | 84.8 | 49 | 0.113 | |||||
1×2 | 1~3 | 满足电力平衡,案例有解 | ||||||
4 | 89.4 | 69.5 | 0.084 | |||||
5 | 91.8 | 57.6 | 0.067 |
风光 比例 | 方 案 | 新能 源装 机 (p.u.) | 储能 装机 (p.u.)× 时长/h | 10%日 内负荷 转移 | 非化石 电量 占比/% | 新能 源利 用率/ % | 度电碳排放/ (kg·(kW·h)–1) | 全系统 成本/ 亿元 | ||||||||
1∶5 | 1 | 4.0 | 1×2 | 否 | 89.4 | 69.5 | 0.084 | 98644 | ||||||||
2 | 4.0 | 1×2 | 是 | 90.0 | 70.5 | 0.079 | 98863 | |||||||||
3 | 3.5 | 1×4 | 是 | 90.6 | 83.8 | 0.074 | 102464 | |||||||||
4 | 4.0 | 0.5×4 | 是 | 89.6 | 70.2 | 0.079 | 97990 | |||||||||
5 | 4.0 | 1×4 | 是 | 92.6 | 76.0 | 0.060 | 112830 | |||||||||
1∶3 | 6 | 3.5 | 1×2 | 否 | 90.8 | 76.4 | 0.074 | 90188 | ||||||||
7 | 3.5 | 1×2 | 是 | 91.0 | 77.0 | 0.069 | 90406 | |||||||||
8 | 3.5 | 0.5×4 | 是 | 90.8 | 76.3 | 0.075 | 89533 | |||||||||
9 | 3.5 | 1×4 | 是 | 91.6 | 81.1 | 0.069 | 104373 | |||||||||
10 | 4.0 | 1×4 | 是 | 93.8 | 71.6 | 0.053 | 115012 |
表 6 2060年新能源发展场景测算结果
Table 6 Calculation results of renewable energy development scenarios in 2060
风光 比例 | 方 案 | 新能 源装 机 (p.u.) | 储能 装机 (p.u.)× 时长/h | 10%日 内负荷 转移 | 非化石 电量 占比/% | 新能 源利 用率/ % | 度电碳排放/ (kg·(kW·h)–1) | 全系统 成本/ 亿元 | ||||||||
1∶5 | 1 | 4.0 | 1×2 | 否 | 89.4 | 69.5 | 0.084 | 98644 | ||||||||
2 | 4.0 | 1×2 | 是 | 90.0 | 70.5 | 0.079 | 98863 | |||||||||
3 | 3.5 | 1×4 | 是 | 90.6 | 83.8 | 0.074 | 102464 | |||||||||
4 | 4.0 | 0.5×4 | 是 | 89.6 | 70.2 | 0.079 | 97990 | |||||||||
5 | 4.0 | 1×4 | 是 | 92.6 | 76.0 | 0.060 | 112830 | |||||||||
1∶3 | 6 | 3.5 | 1×2 | 否 | 90.8 | 76.4 | 0.074 | 90188 | ||||||||
7 | 3.5 | 1×2 | 是 | 91.0 | 77.0 | 0.069 | 90406 | |||||||||
8 | 3.5 | 0.5×4 | 是 | 90.8 | 76.3 | 0.075 | 89533 | |||||||||
9 | 3.5 | 1×4 | 是 | 91.6 | 81.1 | 0.069 | 104373 | |||||||||
10 | 4.0 | 1×4 | 是 | 93.8 | 71.6 | 0.053 | 115012 |
新能 源最 低出 力/% | 风光 比例 | 方 案 | 新能 源装 机 (p.u.) | 储能 装机 (p.u.)× 时长/h | 10% 日内 负荷 转移 | 非化 石电 量占 比/% | 新能 源利 用率/ % | 度电碳排放/ (kg·(kW·h)–1) | 全系统 成本/ 亿元 | |||||||||
1 (基础) | 1∶5 | 3 | 3.5 | 1×4 | 是 | 90.6 | 83.8 | 0.074 | 102464 | |||||||||
1∶3 | 8 | 3.5 | 0.5×4 | 是 | 90.8 | 76.3 | 0.075 | 89533 | ||||||||||
5 | 1∶5 | 11 | 3.0 | 1×4 | 是 | 90.5 | 82.4 | 0.074 | 92097 | |||||||||
1∶3 | 12 | 3.0 | 0.5×4 | 是 | 91.6 | 78.3 | 0.068 | 78894 | ||||||||||
10 | 1∶5 | 13 | 2.5 | 1×4 | 是 | 90.3 | 81.9 | 0.071 | 81731 | |||||||||
1∶3 | 14 | 2.5 | 0.5×4 | 是 | 90.9 | 79.8 | 0.070 | 68255 |
表 7 新能源低出力敏感性分析结果
Table 7 Sensitivity analysis results of low output of renewable energy
新能 源最 低出 力/% | 风光 比例 | 方 案 | 新能 源装 机 (p.u.) | 储能 装机 (p.u.)× 时长/h | 10% 日内 负荷 转移 | 非化 石电 量占 比/% | 新能 源利 用率/ % | 度电碳排放/ (kg·(kW·h)–1) | 全系统 成本/ 亿元 | |||||||||
1 (基础) | 1∶5 | 3 | 3.5 | 1×4 | 是 | 90.6 | 83.8 | 0.074 | 102464 | |||||||||
1∶3 | 8 | 3.5 | 0.5×4 | 是 | 90.8 | 76.3 | 0.075 | 89533 | ||||||||||
5 | 1∶5 | 11 | 3.0 | 1×4 | 是 | 90.5 | 82.4 | 0.074 | 92097 | |||||||||
1∶3 | 12 | 3.0 | 0.5×4 | 是 | 91.6 | 78.3 | 0.068 | 78894 | ||||||||||
10 | 1∶5 | 13 | 2.5 | 1×4 | 是 | 90.3 | 81.9 | 0.071 | 81731 | |||||||||
1∶3 | 14 | 2.5 | 0.5×4 | 是 | 90.9 | 79.8 | 0.070 | 68255 |
1 | 国务院. 2030年前碳达峰行动方案[R]. 北京: 国务院, 2022. |
2 | 国家能源局. 新型电力系统发展蓝皮书(征求意见稿)[R]. 北京: 国家能源局, 2023. |
3 |
石文辉, 白宏, 屈姬贤, 等. 我国风电高效利用技术趋势及发展建议[J]. 中国工程科学, 2018, 20 (3): 51- 57.
DOI |
SHI Wenhui, BAI Hong, QU Jixian, et al. Technology trend and development suggestions for wind power efficient utilization in China[J]. Strategic Study of CAE, 2018, 20 (3): 51- 57.
DOI |
|
4 | 文云峰, 杨伟峰, 汪荣华, 等. 构建100%可再生能源电力系统述评与展望[J]. 中国电机工程学报, 2020, 40 (6): 1843- 1856. |
WEN Yunfeng, YANG Weifeng, WANG Ronghua, et al. Review and prospect of toward 100% renewable energy power systems[J]. Proceedings of the CSEE, 2020, 40 (6): 1843- 1856. | |
5 | 国家能源局. 2020年全国电力工业统计数据[R]. 北京: 国家能源局, 2021. |
6 | 财政部, 国家发展改革委, 国家能源局. 关于促进非水可再生能源发电健康发展的若干意见(财建〔2020〕4号)[R]. 北京: 财政部, 国家发展改革委, 国家能源局, 2020. |
7 | 周原冰, 杨方, 余潇潇, 等. 中国能源电力碳中和实现路径及实施关键问题[J]. 中国电力, 2022, 55 (5): 1- 11. |
ZHOU Yuanbing, YANG Fang, YU Xiaoxiao, et al. Realization pathways and key problems of carbon neutrality in China's energy and power system[J]. Electric Power, 2022, 55 (5): 1- 11. | |
8 | 单葆国, 冀星沛, 许传龙, 等. 近期全球能源供需形势分析及中国能源电力保供策略[J]. 中国电力, 2022, 55 (10): 1- 13. |
SHAN Baoguo, JI Xingpei, XU Chuanlong, et al. Recent situation of global energy supply-demand and guarantee strategy of China's energy and power supply[J]. Electric Power, 2022, 55 (10): 1- 13. | |
9 | 陈国平, 梁志峰, 董昱. 基于能源转型的中国特色电力市场建设的分析与思考[J]. 中国电机工程学报, 2020, 40 (2): 369- 379. |
CHEN Guoping, LIANG Zhifeng, DONG Yu. Analysis and reflection on the marketization construction of electric power with Chinese characteristics based on energy transformation[J]. Proceedings of the CSEE, 2020, 40 (2): 369- 379. | |
10 | 彭迎港. 考虑源荷时序相关性的新能源跨区域消纳研究[D]. 北京: 北京交通大学, 2021. |
PENG Yinggang. Research on cross-regional consumption of renewable energy with consideration of time series correlation between renewable energy and load[D]. Beijing: Beijing Jiaotong University, 2021. | |
11 | 张兴友, 韩德顺, 马杰, 等. 受端电网新能源消纳影响因素分析及应对策略[J]. 济南大学学报(自然科学版), 2019, 33 (1): 68- 72. |
ZHANG Xingyou, HAN Deshun, MA Jie, et al. Analysis of influence factors and countermeasures for renewable energy usage in terminal power grid[J]. Journal of University of Jinan (Science and Technology), 2019, 33 (1): 68- 72. | |
12 | 杨昆, 孙磊, 房超运, 等. 促进新能源消纳的混合发电系统[J]. 中国电力, 2022, 55 (2): 145- 151. |
YANG Kun, SUN Lei, FANG Chaoyun, et al. Hybrid power generation system to promote new energy consumption[J]. Electric Power, 2022, 55 (2): 145- 151. | |
13 | 崔杨, 程广岩, 仲悟之, 等. 计及受端电网调峰趋势的风-光-火特高压直流外送调度方法[J]. 太阳能学报, 2021, 42 (8): 32- 40. |
CUI Yang, CHENG Guangyan, ZHONG Wuzhi, et al. Wind-photovoltaic-fire UHVDC external dispatching method considering peaking trend of power grid[J]. Acta Energiae Solaris Sinica, 2021, 42 (8): 32- 40. | |
14 | 王利利, 王皓, 任洲洋, 等. 计及灵活资源调节潜力的高压配电网新能源接纳能力评估[J]. 中国电力, 2022, 55 (10): 124- 131. |
WANG Lili, WANG Hao, REN Zhouyang, et al. Evaluation of renewable energy accommodation capacity of high voltage distribution networks considering regulation potential of flexible resources[J]. Electric Power, 2022, 55 (10): 124- 131. | |
15 | 赵军, 张敏, 张世锋, 等. 计及碳交易和新能源不确定性的多微电网合作运行优化策略[J]. 中国电力, 2023, 56 (5): 62- 71. |
ZHAO Jun, ZHANG Min, ZHANG Shifeng, et al. Optimization strategy of multi-microgrid cooperative operation considering carbon trading and renewable energy uncertainties[J]. Electric Power, 2023, 56 (5): 62- 71. | |
16 | 廖婧. 新能源电力系统的源网荷多资源调峰策略研究[D]. 长沙: 湖南大学, 2021. |
LIAO Jing. Research on multi-resource peak regulation strategy of source-grid-load in renewable energy power system[D]. Changsha: Hunan University, 2021. | |
17 | 赵波, 李得民, 吴在军, 等. 基于100%绿色能源供电目标的海岛微电网群容量优化配置[J]. 中国电机工程学报, 2021, 41 (3): 932- 945. |
ZHAO Bo, LI Demin, WU Zaijun, et al. Capacity optimal sizing of island microgrid clusters based on the target of 100% green energy power supply[J]. Proceedings of the CSEE, 2021, 41 (3): 932- 945. | |
18 | 寇凌峰, 季宇, 吴鸣, 等. 多能互补系统全寿命周期优化配置方法[J]. 中国电力, 2020, 53 (12): 75- 82. |
KOU Lingfeng, JI Yu, WU Ming, et al. Optimal configuration of multi-energy complementary system considering full life cycle[J]. Electric Power, 2020, 53 (12): 75- 82. | |
19 | 刘联涛, 刘飞, 吉平, 等. 储能参与新能源消纳的优化控制策略[J]. 中国电力, 2023, 56 (3): 137- 143. |
LIU Liantao, LIU Fei, JI Ping, et al. Research on optimal control strategy of energy storage for improving new energy consumption[J]. Electric Power, 2023, 56 (3): 137- 143. | |
20 | 代倩, 张健, 吴俊玲, 等. 基于多分区时序生产模拟的省级电网差异化储能规划方法[J]. 中国电力, 2022, 55 (11): 21- 28. |
DAI Qian, ZHANG Jian, WU Junling, et al. Differentiated energy storage planning method of provincial power grids based on multi-partition time series production simulation[J]. Electric Power, 2022, 55 (11): 21- 28. | |
21 | 窦东, 王雁宇, 李欣, 等. 蒙西地区储能技术经济性优化配置研究[J]. 中国电力, 2022, 55 (8): 52- 63. |
DOU Dong, WANG Yanyu, LI Xin, et al. Techno-economically optimal configuration of energy storage for western Inner Mongolia[J]. Electric Power, 2022, 55 (8): 52- 63. | |
22 | 开赛江, 谭捷, 孙谊媊, 等. 考虑容量约束的储能规模化应用商业模式评价[J]. 中国电力, 2022, 55 (4): 203- 213, 228. |
KAI Saijiang, TAN Jie, SUN Yiqian, et al. Evaluation of business mode for large-scale energy storage applications considering capacity constraints[J]. Electric Power, 2022, 55 (4): 203- 213, 228. | |
23 | 李相俊, 马会萌, 姜倩. 新能源侧储能配置技术研究综述[J]. 中国电力, 2022, 55 (1): 13- 25. |
LI Xiangjun, MA Huimeng, JIANG Qian. Review of energy storage configuration technology on renewable energy side[J]. Electric Power, 2022, 55 (1): 13- 25. | |
24 | 孙启星, 张超, 李成仁, 等. “碳达峰、碳中和” 目标下的电力系统成本及价格水平预测[J]. 中国电力, 2023, 56 (1): 9- 16. |
SUN Qixing, ZHANG Chao, LI Chengren, et al. Prediction of power system cost and price level under the goal of "carbon peak and carbon neutralization"[J]. Electric Power, 2023, 56 (1): 9- 16. | |
25 | 刘纯, 黄越辉, 石文辉, 等. 新能源电力系统生产模拟[M]. 北京: 中国电力出版社, 2019: 1–61, 81–110. |
26 | 辛保安. 新型电力系统构建方法论研究[J]. 新型电力系统, 2023, 1 (1): 1- 18. |
XIN Baoan. Research on the methodology of constructing new power systems[J]. New Type Power Systems, 2023, 1 (1): 1- 18. | |
27 | 郭剑波, 王铁柱, 罗魁, 等. 新型电力系统面临的挑战及应对思考[J]. 新型电力系统, 2023, (1): 32- 43. |
GUO Jianbo, WANG Tiezhu, LUO Kui, et al. Development of new power systems: challenges and solutions[J]. New Type Power Systems, 2023, (1): 32- 43. | |
28 | 冯双磊, 胡菊, 宋宗朋, 等. 新能源资源评估与中长期电量预测[M]. 北京: 中国电力出版社, 2019: 122–159. |
29 | 丁明, 楚明娟, 毕锐, 等. 基于序贯蒙特卡洛随机生产模拟的风电接纳能力评价方法及应用[J]. 电力自动化设备, 2016, 36 (9): 67- 73. |
DING Ming, CHU Mingjuan, BI Rui, et al. Wind power accommodation capability evaluation based on sequential Monte Carlo probabilistic production simulation and its application[J]. Electric Power Automation Equipment, 2016, 36 (9): 67- 73. |
[1] | 张磊, 马晓伟, 王满亮, 陈力, 高丙团. 互联新能源电力系统区内AGC机组分布式协同控制策略[J]. 中国电力, 2025, 58(3): 8-19. |
[2] | 汪林光, 李旭涛, 任勇, 谢小荣. 基于元启发式算法的新能源电力系统振荡稳定性最差工况搜索方法[J]. 中国电力, 2025, 58(3): 65-72. |
[3] | 邹小燕, 张瑞宏. 考虑政府干预的可再生能源与储能企业合作模式演化博弈研究[J]. 中国电力, 2025, 58(1): 153-163. |
[4] | 王雨晴, 张敏, 王嘉兴, 李泊皓, 杨天阳, 曾鸣. 基于超模博弈的共享储能容量租赁价格决策[J]. 中国电力, 2025, 58(1): 164-173. |
[5] | 孙东磊, 王宪, 孙毅, 孟祥飞, 张涌琛, 张玉敏. 基于多面体不确定集合的电力系统灵活性量化评估方法[J]. 中国电力, 2024, 57(9): 146-155. |
[6] | 傅观君, 张富强, 夏鹏, 冯君淑, 张晋芳. 天然气发电在新型电力系统中的功能定位及发展前景研判[J]. 中国电力, 2024, 57(8): 67-74. |
[7] | 孙东磊, 孙毅, 刘蕊, 孙鹏凯, 张玉敏. 计及多层级配电网的分布式新能源最大消纳空间分解测算[J]. 中国电力, 2024, 57(8): 108-116. |
[8] | 李鲁阳, 陈龙翔, 陈磊, 孙大卫, 吴林林, 闵勇. 用于新能源一次调频的储能经济配置研究[J]. 中国电力, 2024, 57(7): 54-65. |
[9] | 王硕, 霍慧娟, 徐丹, 郄鑫, 辛诚, 李薇薇, 段婧. 计及特高压交流工程建设的区域碳减排测算及分摊[J]. 中国电力, 2024, 57(7): 163-172. |
[10] | 李佳蔚, 张冠宇. 大规模分布式新能源接入对省级电网稳定性影响[J]. 中国电力, 2024, 57(6): 174-180. |
[11] | 高政南, 姜楠, 陈启鑫, 徐江, 王海利, 辛力, 徐青贵. 德国电力市场能源转型建设及启示[J]. 中国电力, 2024, 57(6): 204-214. |
[12] | 李咸善, 丁胜彪, 李飞, 李欣. 考虑水电调节费用补偿的风光水联盟优化调度策略[J]. 中国电力, 2024, 57(5): 26-38. |
[13] | 朱子民, 张锦芳, 常清, 周专, 张晓林. 大规模新能源接入弱同步支撑柔直系统的送端自适应VSG控制策略[J]. 中国电力, 2024, 57(5): 211-221. |
[14] | 李虎军, 张栋, 吕梦璇, 邓方钊, 杨萌, 元博. 考虑碳排放约束的新能源与调峰资源优化配置方法[J]. 中国电力, 2024, 57(4): 42-51. |
[15] | 叶小宁, 王彩霞, 李琼慧, 杨超. 国外新能源高占比电力系统电力供应保障措施及启示[J]. 中国电力, 2024, 57(4): 61-67. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||