中国电力 ›› 2025, Vol. 58 ›› Issue (5): 176-188.DOI: 10.11930/j.issn.1004-9649.202411069

• 新型电网 • 上一篇    下一篇

基于深度强化学习的孤岛微电网二次频率控制

王力1,2(), 蒋宇翔1(), 曾祥君1,2,3, 赵斌1,2, 李均昊4   

  1. 1. 长沙理工大学 电气与信息工程学院,湖南 长沙 410114
    2. 长沙理工大学 电网防灾减灾全国重点实验室,湖南 长沙 410114
    3. 湖南理工学院,湖南 岳阳 414006
    4. 眉山市特种设备监督检验所,四川 眉山 620000
  • 收稿日期:2024-11-20 发布日期:2025-05-30 出版日期:2025-05-28
  • 作者简介:
    王力(1990),男,通信作者,博士,副教授,从事新型电力系统运行与控制研究,E-mail:wangli@csust.edu.cn
    蒋宇翔(1999),男,硕士研究生,从事微电网运行控制研究,E-mail:jyx395215402@163.com
  • 基金资助:
    国家自然科学基金资助项目(交直流混联独立微电网动态频率自律控制研究,52107071);湖南省自然科学基金资助项目(风光水储交直流混联微电网调频特性及频率稳定控制研究,2023JJ40043);2023年长沙理工大学研究生科研创新项目(新能源发电系统中双模式并网逆变器平滑切换控制,CSLGCX23065)。

Secondary Frequency Control of Islanded Microgrid Based on Deep Reinforcement Learning

WANG Li1,2(), JIANG Yuxiang1(), ZENG Xiangjun1,2,3, ZHAO Bin1,2, LI Junhao4   

  1. 1. School of Electrical and Information Engineering, Changsha University of Science and Technology, Changsha 410114, China
    2. State Key Laboratory of Disaster Prevention & Reduction for Power Grid, Changsha University of Science & Technology, Changsha 410114, China
    3. Hunan Institute of Science and Technology, Yueyang 414006, China
    4. Meishan City Special Equipment Supervision and Inspection Institute, Meishan 620000, China
  • Received:2024-11-20 Online:2025-05-30 Published:2025-05-28
  • Supported by:
    This work is supported by National Natural Science Foundation of China (Research on Dynamic Frequency Autonomous Control in AC-DC Hybrid Standalone Microgrids, No.52107071), Hunan Provincial Natural Science Foundation of China (Study on Frequency Regulation Characteristics and Stability Control of Wind-Solar-Hydro-Storage AC-DC Hybrid Microgrids, No.2023JJ40043) and 2023 Graduate Research Innovation Project of Changsha University of Science and Technology (Smooth switching control of dual-mode grid-connected inverter in new energy power generation system, No.CSLGCX23065).

摘要:

随着分布式电源大量接入微电网,可再生能源发电波动性和系统随机扰动给孤岛微电网频率稳定和运行控制带来了严重威胁。为此,提出了基于深度强化学习的二次频率控制方法,分析孤岛微电网下垂控制特性,提出了基于深度Q网络的二次频率控制器结构。将频率偏差作为状态输入变量,依次完成深度Q网络算法中状态空间、动作空间、奖励函数、神经网络和超参数的设计,其中奖励函数兼顾了频率恢复和各分布式电源功率分配的目标,实现各智能体动作选择一致性;通过离线学习训练生成深度强化学习二次频率控制器。在Matlab/Simulink中搭建孤岛微电网仿真模型,设置多场景源荷扰动验证控制器性能。结果表明,与传统PID控制和基于Q学习算法控制器相比,该控制方法能够快速实现更稳定的二次频率控制,并能自适应协调各分布式电源按自身容量进行功率分配,确保系统稳定运行。

关键词: 深度强化学习, 孤岛微电网, 下垂控制, 深度Q网络, 二次频率控制, 功率分配

Abstract:

With the large-scale integration of distributed generation into microgrids, the volatility of renewable energy generation and system random disturbances pose significant threats to the frequency stability and operational control of islanded microgrids. To address this, a secondary frequency control method based on deep reinforcement learning is proposed. The droop control characteristics of islanded microgrids are analyzed, and a secondary frequency controller structure based on deep Q-Networks is presented. The frequency deviation is used as the state input variable, and the design of the state space, action space, reward function, neural network, and hyperparameters in the deep Q-Networks algorithm is carried out. The reward function balances the goals of frequency recovery and power allocation among distributed energy resources , ensuring consistency in action selection among the intelligent agents. An offline learning process is used to train the deep reinforcement learning-based secondary frequency controller. A simulation model of the islanded microgrid is developed in Matlab/Simulink, and multiple disturbance scenarios are tested to validate the controller's performance. The results show that, compared to traditional PID control and Q-Learning-based controllers, the proposed method achieves more stable secondary frequency control and adapts to coordinate the power allocation of distributed generation units according to their capacities, ensuring the stable operation of the system.

Key words: deep reinforcement learning, islanded microgrid, droop control, deep Q-Network, secondary frequency control, power allocation