中国电力 ›› 2024, Vol. 57 ›› Issue (10): 46-56.DOI: 10.11930/j.issn.1004-9649.202402028
收稿日期:
2024-02-07
出版日期:
2024-10-28
发布日期:
2024-10-25
作者简介:
穆怀天(1990—),男,通信作者,工程师,从事电网规划与项目管理,E-mail:921432720@qq.com基金资助:
Huaitian MU(), Hongliang LIAN(
), Juan LIU, Yanqiong LI
Received:
2024-02-07
Online:
2024-10-28
Published:
2024-10-25
Supported by:
摘要:
分布式电源规模化并网引入了下垂控制等非光滑本地控制约束,易导致传统基于前推回代法的潮流计算方法收敛失败,且由于分布式电源并网改变系统潮流方向,导致传统等值电阻法、压降法等理论线损计算方法不再适用。为解决上述问题,提出计及有载调压变压器调压、分布式光伏下垂控制的光滑化模型,构建了基于数据物理融合驱动的三相配电网线性化理论线损快速计算模型。在传统基于稳态运行特性线性化、一阶泰勒展开线性化的基础上,利用偏最小二乘法补偿线性化误差。相比纯物理驱动线性化,在负荷重载条件下仍具有较高精度;相比于纯数据驱动线性化,能够保留支路拓扑信息,适用于开关状态变化场景。所提模型仅对线性化误差进行拟合补偿,在保证线性化精度的前提下,极大地提高了潮流模型的收敛性与计算效率,且能够适应不同负荷水平实现精确误差补偿。基于实际42节点三相配电网系统仿真,验证了所提模型具有较高精度,且能够实现配电网理论线损鲁棒、快速计算。
穆怀天, 廉洪亮, 刘娟, 李艳琼. 基于数据物理融合驱动配电网三相线性化潮流及线损分析应用[J]. 中国电力, 2024, 57(10): 46-56.
Huaitian MU, Hongliang LIAN, Juan LIU, Yanqiong LI. Application of Three-Phase Linearized Power Flow and Line Loss Analysis of Distribution Network Driven by Data and Physics Fusion[J]. Electric Power, 2024, 57(10): 46-56.
图 4 基于数据物理融合驱动线性化的配电网三相快速线损计算方法
Fig.4 Three-phase fast line loss calculation method for distribution network driven by data and physics fusion linearization
理论线损计算模型 | 线损率/% | |
非线性模型 | 7.09 | |
物理线性化 | 5.82 | |
数据物理融合驱动线性化 | 7.09 |
表 1 不同方法的理论线损率对比
Table 1 Comparison of theoretical line loss rates of different methods
理论线损计算模型 | 线损率/% | |
非线性模型 | 7.09 | |
物理线性化 | 5.82 | |
数据物理融合驱动线性化 | 7.09 |
样本数/组 | 计算耗时/s | |
150 | 2.59 |
表 2 误差补偿模型训练耗时
Table 2 Training time of error compensation model
样本数/组 | 计算耗时/s | |
150 | 2.59 |
理论线损计算模型 | ERMS | EMA | ||
物理线性化 | ||||
数据物理融合驱动线性化 |
表 3 不同方法的理论线损计算误差统计
Table 3 Theoretical line loss calculation error statistics of different methods
理论线损计算模型 | ERMS | EMA | ||
物理线性化 | ||||
数据物理融合驱动线性化 |
理论线损计算模型 | 迭代次数 | 计算耗时/s | ||
非线性模型 | 4 | 8.987 | ||
线性化模型 | 1 | 0.165 |
表 4 不同方法迭代次数与计算耗时
Table 4 Number of iterations and calculation time of different methods
理论线损计算模型 | 迭代次数 | 计算耗时/s | ||
非线性模型 | 4 | 8.987 | ||
线性化模型 | 1 | 0.165 |
数据驱动模型 | ERMS | EMA | ||
M1 | ||||
M2 |
表 5 不同数据驱动模型下的理论线损计算精度
Table 5 Calculation accuracy of theoretical line loss under different data-driven models
数据驱动模型 | ERMS | EMA | ||
M1 | ||||
M2 |
1 | 江木, 孙云超, 刘巨. 10 kV配电网理论线损计算方法及应用对比[J]. 供用电, 2019, 36 (11): 78- 83. |
JIANG Mu, SUN Yunchao, LIU Ju. Theoretical line loss calculation method and application comparison for 10 kV distribution network[J]. Distribution & Utilization, 2019, 36 (11): 78- 83. | |
2 | 阮琪, 杨超, 王涵锋. 不同密度采集数据的配电网线损连续计算方法[J]. 电工材料, 2023, (6): 90- 94. |
RUAN Qi, YANG Chao, WANG Hanfeng. Line loss calculation method for distribution network considering collected data of different densities[J]. Electrical Engineering Materials, 2023, (6): 90- 94. | |
3 |
丁心海, 罗毅芳, 刘巍, 等. 改进配电网线损计算方法的几点建议[J]. 电力系统自动化, 2001, 25 (13): 57- 60.
DOI |
DING Xinhai, LUO Yifang, LIU Wei, et al. Proposalson improving the current methods for calculating line lossesof distribution network[J]. Automation of Electric Power Systems, 2001, 25 (13): 57- 60.
DOI |
|
4 | 宋智强, 黄耀辉, 赵化时, 等. 含多类型直流的交直流混联电网潮流计算方法适用性分析[J]. 电力自动化设备, 2023. |
SONG Zhiqiang, HUANG Yaohui, ZHAO Huashi, et al. Applicability analysis of classical power flow calculation methods for AC/DC hybrid power systems with multi-type DC links[J]. Electric Power Automation Equipment, 2023. | |
5 |
王磊, 张建宾, 余昆, 等. 基于典型负荷曲线的配电网线损计算方法研究[J]. 智慧电力, 2020, 48 (3): 124- 130.
DOI |
WANG Lei, ZHANG Jianbin, YU Kun, et al. Calculation method of distribution line loss based on typical load curve[J]. Smart Power, 2020, 48 (3): 124- 130.
DOI |
|
6 | 马喜平, 贾嵘, 梁琛, 等. 高比例新能源接入下电力系统降损研究综述[J]. 电网技术, 2022, 46 (11): 4305- 4315. |
MA Xiping, JIA Rong, LIANG Chen, et al. Review of researches on loss reduction in context of high penetration of renewable power generation[J]. Power System Technology, 2022, 46 (11): 4305- 4315. | |
7 | 王成山, 李鹏. 分布式发电、微网与智能配电网的发展与挑战[J]. 电力系统自动化, 2010, 34 (2): 10- 14, 23. |
WANG Chengshan, LI Peng. Development and challenges of distributed generation, the micro-grid and smart distribution system[J]. Automation of Electric Power Systems, 2010, 34 (2): 10- 14, 23. | |
8 | 田阳, 李志兵, 田宇, 等. 高比例新能源接入下快速真空断路器容性开合能力提升研究[J]. 电网技术, 2024, 48 (6): 2670- 2679. |
TIAN Yang, LI Zhibing, TIAN Yu, et al. Research on the improvement of capacitive opening and closing ability of fast circuit breaker under high proportion of new energy access[J]. Power System Technology, 2024, 48 (6): 2670- 2679. | |
9 | 章博, 刘晟源, 林振智, 等. 高比例新能源下考虑需求侧响应和智能软开关的配电网重构[J]. 电力系统自动化, 2021, 45 (8): 86- 94. |
ZHANG Bo, LIU Shengyuan, LIN Zhenzhi, et al. Distribution network reconfiguration with high penetration of renewable energy considering demand response and soft open point[J]. Automation of Electric Power Systems, 2021, 45 (8): 86- 94. | |
10 | 康重庆, 杜尔顺, 郭鸿业, 等. 新型电力系统的六要素分析[J]. 电网技术, 2023, 47 (5): 1741- 1750. |
KANG Chongqing, DU Ershun, GUO Hongye, et al. Primary exploration of six essential factors in new power system[J]. Power System Technology, 2023, 47 (5): 1741- 1750. | |
11 |
KIM J, SEOK J K, MULJADI E, et al. Adaptive Q–V scheme for the voltage control of a DFIG-based wind power plant[J]. IEEE Transactions on Power Electronics, 2016, 31 (5): 3586- 3599.
DOI |
12 | 巨云涛, 王健凯, 陈希, 等. 计及详细源荷模型的三相独立微电网连续潮流计算方法[J]. 电网技术, 2022, 46 (2): 718- 727. |
JU Yuntao, WANG Jiankai, CHEN Xi, et al. Continuous power flow calculation method for three-phase isolated microgrid considering detailed source and load models[J]. Power System Technology, 2022, 46 (2): 718- 727. | |
13 |
肖峻, 周玉鹏, 鲍震宇. 配电系统优化问题建模中的潮流模型选择方法[J]. 电力系统自动化, 2023, 47 (15): 170- 178.
DOI |
XIAO Jun, ZHOU Yupeng, BAO Zhenyu. Power flow model selection method for modeling distribution system optimization problem[J]. Automation of Electric Power Systems, 2023, 47 (15): 170- 178.
DOI |
|
14 |
LEHMANN K, GRASTIEN A, VAN HENTENRYCK P. AC-feasibility on tree networks is NP-hard[J]. IEEE Transactions on Power Systems, 2016, 31 (1): 798- 801.
DOI |
15 |
YANG Z F, XIE K G, YU J, et al. A general formulation of linear power flow models: basic theory and error analysis[J]. IEEE Transactions on Power Systems, 2019, 34 (2): 1315- 1324.
DOI |
16 | 向明旭, 杨知方, 余娟, 等. 配电网线性潮流模型通式及误差分析[J]. 中国电机工程学报, 2021, 41 (6): 2053- 2063, 13. |
XIANG Mingxu, YANG Zhifang, YU Juan, et al. Linear power flow model in distribution network: unified expression and error analysis[J]. Proceedings of the CSEE, 2021, 41 (6): 2053- 2063, 13. | |
17 |
别朝红, 王锡凡. 雅可比矩阵的奇异性检测和网络孤岛的判断[J]. 电力系统自动化, 1998, 22 (11): 24- 27.
DOI |
BIE Zhaohong, WANG Xifan. Detection of Jacobian singularity and network islanding[J]. Automation of Electric Power Systems, 1998, 22 (11): 24- 27.
DOI |
|
18 |
FAN Z X, YANG Z F, YU J. Error bound restriction of linear power flow model[J]. IEEE Transactions on Power Systems, 2022, 37 (1): 808- 811.
DOI |
19 |
GARCES A. A linear three-phase load flow for power distribution systems[J]. IEEE Transactions on Power Systems, 2016, 31 (1): 827- 828.
DOI |
20 |
YUAN Z. Formulations and approximations of branch flow model for general power networks[J]. Journal of Modern Power Systems and Clean Energy, 2022, 10 (5): 1110- 1126.
DOI |
21 |
CHEN J Q, WU W C, ROALD L A. Data-driven piecewise linearization for distribution three-phase stochastic power flow[J]. IEEE Transactions on Smart Grid, 2022, 13 (2): 1035- 1048.
DOI |
22 |
LIU Y X, ZHANG N, WANG Y, et al. Data-driven power flow linearization: a regression approach[J]. IEEE Transactions on Smart Grid, 2019, 10 (3): 2569- 2580.
DOI |
23 |
LI P H, WU W C, WANG X M, et al. A data-driven linear optimal power flow model for distribution networks[J]. IEEE Transactions on Power Systems, 2023, 38 (1): 956- 959.
DOI |
24 |
LIU Y T, LI Z S, SUN S M. A data-driven method for online constructing linear power flow model[J]. IEEE Transactions on Industry Applications, 2023, 59 (5): 5411- 5419.
DOI |
25 |
SHAO Z T, ZHAI Q Z, WU J, et al. Data based linear power flow model: investigation of a least-squares based approximation[J]. IEEE Transactions on Power Systems, 2021, 36 (5): 4246- 4258.
DOI |
26 |
TAN Y, CHEN Y Y, LI Y, et al. Linearizing power flow model: a hybrid physical model-driven and data-driven approach[J]. IEEE Transactions on Power Systems, 2020, 35 (3): 2475- 2478.
DOI |
27 |
巨云涛, 杨明友, 吴文传. 适用于配电网三相优化潮流的数据物理融合驱动线性化方法[J]. 电力系统自动化, 2022, 46 (13): 43- 52.
DOI |
JU Yuntao, YANG Mingyou, WU Wenchuan. Hybrid data-physical-driven linearization method for three-phase optimal power flow in distribution network[J]. Automation of Electric Power Systems, 2022, 46 (13): 43- 52.
DOI |
|
28 |
BAZRAFSHAN M, GATSIS N. Comprehensive modeling of three-phase distribution systems via the bus admittance matrix[J]. IEEE Transactions on Power Systems, 2018, 33 (2): 2015- 2029.
DOI |
29 |
SHAO Z T, ZHAI Q Z, GUAN X H. Physical-model-aided data-driven linear power flow model: an approach to address missing training data[J]. IEEE Transactions on Power Systems, 2023, 38 (3): 2970- 2973.
DOI |
30 | YANG J, REN G X, LUO L, et al. CNN-LSTM combined prediction algorithm for transmission line loss rate based on improved SSA[C]//2022 5th International Conference on Electronics and Electrical Engineering Technology (EEET). Beijing, China. IEEE, 2022: 83–89. |
31 | HUANG H R. Line loss prediction of distribution network based on BP neural network[J]. Scientific Programming, 2022, 2022, 6105316. |
[1] | 吴云锐, 张建坡, 田新成, 应恺锋, 陈忠. 计及频率适应和快速稳定特性的多端直流电网改进协调控制策略[J]. 中国电力, 2025, 58(3): 31-42. |
[2] | 赵静波, 李文博, 朱鑫要, 孙庆斌, 郝全睿. 海上风电经柔直送出系统受端扰动自适应控制策略[J]. 中国电力, 2025, 58(1): 26-38. |
[3] | 么钟然, 孙丽颖. 考虑线路阻抗的分布式储能SOC均衡控制策略[J]. 中国电力, 2024, 57(9): 238-246. |
[4] | 张静忠, 蒙飞, 孙阳, 于慧霞. 考虑有功不确定性的配电网新能源无功优化控制[J]. 中国电力, 2024, 57(3): 51-59. |
[5] | 夏向阳, 蒋戴宇, 曾小勇, 龚芬, 吴小忠, 华夏, 罗彦鹏, 石超. 基于虚拟振荡器控制的储能变流器控制策略研究[J]. 中国电力, 2024, 57(11): 70-77. |
[6] | 王激华, 叶夏明, 秦如意, 应芳义, 俞佳捷. 基于指数型下垂控制的氢电混合储能微网协调控制策略研究[J]. 中国电力, 2023, 56(7): 43-53. |
[7] | 林金娇, 孔祥平, 王楚扬, 张秋玥, 郑俊超, 张犁. 适用于柔性直流的辅助功率补偿下垂控制[J]. 中国电力, 2023, 56(4): 119-129. |
[8] | 周文俊, 曹毅, 李杰, 金涛, 陈文剑, 周霞. 考虑风电场调控裕度的风火打捆直流外送系统无功电压紧急控制策略[J]. 中国电力, 2023, 56(4): 77-87. |
[9] | 张宇, 王洪希, 王璞. 交直流混合微电网互联变流器微分平坦控制[J]. 中国电力, 2022, 55(7): 102-109,120. |
[10] | 杨蕾, 王智超, 周鑫, 李胜男, 和鹏, 向川, 张杰, 王德林. 大规模双馈风电机组并网频率稳定控制策略[J]. 中国电力, 2021, 54(5): 186-194. |
[11] | 王天翔, 程雪坤, 李伟超, 郑金鑫. 基于变参数减载控制的风电场一次调频策略[J]. 中国电力, 2021, 54(12): 94-101. |
[12] | 王岳, 杨国华, 庄家懿, 潘欢, 邹玙琦, 韩世军. 基于一致性算法的微电网无差调频控制策略[J]. 中国电力, 2020, 53(10): 187-191. |
[13] | 王凌云, 周璇卿, 李升, 刘远. 基于改进功率环的微电网对等控制策略研究[J]. 中国电力, 2017, 50(9): 171-177. |
[14] | 禹红,李灵利,罗继平,向敏. 并网状态下光伏微源控制[J]. 中国电力, 2015, 48(3): 144-149. |
[15] | 张会强,王宇拓,王林川. 基于直流母线电压信号的直流微电网协调控制[J]. 中国电力, 2015, 48(11): 110-116. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||