[1] LIU J Y, ZHANG Y J. Has carbon emissions trading system promoted non-fossil energy development in China?[J]. Applied Energy, 2021, 302: 117613. [2] 李培平, 周泓宇, 姚伟, 等. 多馈入结构背景下的高压直流输电系统换相失败研究综述[J]. 电网技术, 2022, 46(3): 834–850 LI Peiping, ZHOU Hongyu, YAO Wei, et al. Review of commutation failure on HVDC transmission system under background of multi-infeed structure[J]. Power System Technology, 2022, 46(3): 834–850 [3] 周孝信, 陈树勇, 鲁宗相, 等. 能源转型中我国新一代电力系统的技术特征[J]. 中国电机工程学报, 2018, 38(7): 1893–1904, 2205 ZHOU Xiaoxin, CHEN Shuyong, LU Zongxiang, et al. Technology features of the new generation power system in China[J]. Proceedings of the CSEE, 2018, 38(7): 1893–1904, 2205 [4] 金一丁, 贺静波, 李光辉, 等. 风电基地经特高压直流送出系统换相失败故障(二): 送端风电机组暂态无功电压特性与作用机理分析[J]. 中国电机工程学报, 2022, 42(13): 4738–4749 JIN Yiding, HE Jingbo, LI Guanghui, et al. Commutation failure of UHVDC system for wind farm integration(part Ⅱ): characteristics and mechanism analysis of transient reactive power and voltage of wind Powers in sending terminal grid[J]. Proceedings of the CSEE, 2022, 42(13): 4738–4749 [5] 陈国平, 李明节, 许涛, 等. 我国电网支撑可再生能源发展的实践与挑战[J]. 电网技术, 2017, 41(10): 3095–3103 CHEN Guoping, LI Mingjie, XU Tao, et al. Practice and challenge of renewable energy development based on interconnected power grids[J]. Power System Technology, 2017, 41(10): 3095–3103 [6] 高超, 郭强, 周勤勇, 等. “十三五”电力规划中新能源大规模外送的安全稳定问题[J]. 中国电力, 2017, 50(1): 37–42 GAO Chao, GUO Qiang, ZHOU Qinyong, et al. The security and stability problems of large-scale outbound power transmission of renewable energy in the 13 th five-year power plan[J]. Electric Power, 2017, 50(1): 37–42 [7] 林圣, 刘健, 刘磊, 等. 基于控制保护的高压直流输电系统换相失败抑制方法综述[J]. 中国电机工程学报, 2020, 40(19): 6045–6059 LIN Sheng, LIU Jian, LIU Lei, et al. A review of commutation failure suppression methods for HVDC systems based on control protection measures[J]. Proceedings of the CSEE, 2020, 40(19): 6045–6059 [8] 石文辉, 屈姬贤, 罗魁, 等. 高比例新能源并网与运行发展研究[J]. 中国工程科学, 2022, 24(6): 52–63 SHI W H, QU J X, LUO K, et al. Grid-integration and operation of high proportioned new energy[J]. Strategic Study of CAE, 2022, 24(6): 52–63 [9] 汪宁渤, 马明, 强同波, 等. 高比例新能源电力系统的发展机遇、挑战及对策[J]. 中国电力, 2018, 51(1): 29–35, 50 WANG Ningbo, MA Ming, QIANG Tongbo, et al. High-penetration new energy power system development: challenges, opportunities and countermeasures[J]. Electric Power, 2018, 51(1): 29–35, 50 [10] 景柳铭, 王宾, 董新洲, 等. 高压直流输电系统连续换相失败研究综述[J]. 电力自动化设备, 2019, 39(9): 116–123 JING Liuming, WANG Bin, DONG Xinzhou, et al. Review of consecutive commutation failure research for HVDC transmission system[J]. Electric Power Automation Equipment, 2019, 39(9): 116–123 [11] TIAN D C, XIONG X F, XIAO C. Early warning and inhibition of HVDC subsequent commutation failure during recovery process under grid fault[J]. IEEE Transactions on Power Delivery, 2021, 36(2): 1051–1062. [12] 唐杰, 刘白杨, 高士然, 等. 应用于风电场的静止同步补偿器电压控制策略[J]. 电力系统及其自动化学报, 2017, 29(11): 81–86 TANG Jie, LIU Baiyang, GAO Shiran, et al. Voltage control strategy for STATCOM used in wind farms[J]. Proceedings of the CSU-EPSA, 2017, 29(11): 81–86 [13] QI J, ZHAO W B, BIAN X Y. Comparative study of SVC and STATCOM reactive power compensation for prosumer microgrids with DFIG-based wind farm integration[J]. IEEE Access, 2020, 8: 209878–209885. [14] 王成福, 梁军, 张利, 等. 基于静止同步补偿器的风电场无功电压控制策略[J]. 中国电机工程学报, 2010, 30(25): 23–28 WANG Chengfu, LIANG Jun, ZHANG Li, et al. Reactive power and voltage control strategy for wind farm based on STATCOM[J]. Proceedings of the CSEE, 2010, 30(25): 23–28 [15] 刘海涛, 陈彪, 朱林, 等. 考虑多种无功补偿装置协同优化的电压控制方法[J]. 中国电力, 2022, 55(11): 97–102 LIU H T, CHEN B, ZHU L, et al. A voltage control method considering the collaborative optimization of multiple reactive power compensation devices[J]. Electric Power, 2022, 55(11): 97–102 [16] PARK J H, BAEK Y S. Coordination control of voltage between STATCOM and reactive power compensation devices in steady-state[J]. Journal of Electrical Engineering and Technology, 2012, 7(5): 689–697. [17] 陈厚合, 鲁华威, 王长江, 等. 抑制直流送端系统暂态过电压的直流和风电控制参数协调优化[J]. 电力自动化设备, 2020, 40(10): 46–55 CHEN Houhe, LU Huawei, WANG Changjiang, et al. Coordinated optimization of HVDC and wind power control parameters for mitigating transient overvoltage on HVDC sending-side system[J]. Electric Power Automation Equipment, 2020, 40(10): 46–55 [18] NGUYEN T T, KIM H M. Cluster-based predictive PCC voltage control of large-scale offshore wind farm[J]. IEEE Access, 2020, 9: 4630–4641. [19] 刘京波, 宋鹏, 吴林林, 等. 风电场无功电压控制系统运行现状分析及提升措施[J]. 中国电力, 2018, 51(8): 130–138 LIU Jingbo, SONG Peng, WU Linlin, et al. Operation situation analysis and improvement measures for automatic voltage control system of wind farms[J]. Electric Power, 2018, 51(8): 130–138 [20] ZHAO H R, WU Q W, WANG J H, et al. Combined active and reactive power control of wind farms based on model predictive control[J]. IEEE Transactions on Energy Conversion, 2017, 32(3): 1177–1187. [21] LIU X Y, LI C B, SHAHIDEHPOUR M, et al. An adaptive control method for improving voltage and frequency stability of wind-thermal bundled system[J]. IEEE Access, 2020, 8: 179415–179423. [22] 王熙纯, 刘纯, 林伟芳, 等. 风机故障穿越特性对大规模风电直流外送系统暂态过电压的影响及参数优化[J]. 电网技术, 2021, 45(12): 4612–4621 WANG Xichun, LIU Chun, LIN Weifang, et al. Influence of wind turbine fault ride-through characteristics on transient overvoltage of large-scale wind power DC transmission systems and parameter optimization[J]. Power System Technology, 2021, 45(12): 4612–4621 [23] JIANG S Q, XU Y N, LI G Q, et al. Coordinated control strategy of receiving-end fault ride-through for DC grid connected large-scale wind power[J]. IEEE Transactions on Power Delivery, 2022, 37(4): 2673–2683. [24] 韩平平, 张海天, 丁明, 等. 大规模高压直流输电系统闭锁故障下送端风电场高电压穿越的控制策略[J]. 电网技术, 2018, 42(4): 1086–1095 HAN Pingping, ZHANG Haitian, DING Ming, et al. A coordinated HVRT strategy of large-scale wind power transmitted with HVDC system[J]. Power System Technology, 2018, 42(4): 1086–1095 [25] 曹帅, 向往, 姚良忠, 等. 风电经混合型MMC-HVDC并网的交直流故障穿越策略[J]. 电力系统自动化, 2018, 42(7): 37–43, 49 CAO Shuai, XIANG Wang, YAO Liangzhong, et al. AC and DC fault ride-through strategies for wind power integration via hybrid MMC-HVDC[J]. Automation of Electric Power Systems, 2018, 42(7): 37–43, 49 [26] SAKAMURI J N, RATHER Z H, RIMEZ J, et al. Coordinated voltage control in offshore HVDC connected cluster of wind power plants[J]. IEEE Transactions on Sustainable Energy, 2016, 7(4): 1592–1601. [27] 汤奕, 郑晨一. 高压直流输电系统换相失败影响因素研究综述[J]. 中国电机工程学报, 2019, 39(2): 499–513, 647 TANG Yi, ZHENG Chenyi. Review on influencing factors of commutation failure in HVDC systems[J]. Proceedings of the CSEE, 2019, 39(2): 499–513, 647 [28] 林圣, 雷雨晴, 刘健, 等. HVDC送端系统故障引发受端换相失败分析[J]. 中国电机工程学报, 2022, 42(5): 1669–1680 LIN Sheng, LEI Yuqing, LIU Jian, et al. Analysis of receiving-side commutation failure mechanism caused by HVDC sending-side system fault[J]. Proceedings of the CSEE, 2022, 42(5): 1669–1680 [29] 屠竞哲, 张健, 刘明松, 等. 风火打捆直流外送系统直流故障引发风机脱网的问题研究[J]. 电网技术, 2015, 39(12): 3333–3338 TU Jingzhe, ZHANG Jian, LIU Mingsong, et al. Study on wind turbine generators tripping caused by HVDC contingencies of wind-thermal-bundled HVDC transmission systems[J]. Power System Technology, 2015, 39(12): 3333–3338 [30] 杨俊友, 崔嘉, 邢作霞, 等. 考虑风电功率预测的分散式风电场无功控制策略[J]. 电力系统自动化, 2015, 39(13): 8–15 YANG Junyou, CUI Jia, XING Zuoxia, et al. Reactive power control strategy for dispersed wind farm considering wind power forecasting[J]. Automation of Electric Power Systems, 2015, 39(13): 8–15 |