[1] 张国荣, 丁晓通, 彭勃, 等. 交直流混合微电网互联变流器改进控制策略[J]. 电力系统保护与控制, 2020, 48(14): 50–58 ZHANG Guorong, DING Xiaotong, PENG Bo, et al. Improved control strategy for an AC/DC hybrid microgrid interlinking converter[J]. Power System Protection and Control, 2020, 48(14): 50–58 [2] 周稳, 戴瑜兴, 毕大强, 等. 交直流混合微电网协同控制策略[J]. 电力自动化设备, 2015, 35(10): 51–57 ZHOU Wen, DAI Yuxing, BI Daqiang, et al. Coordinative control strategy for hybrid AC-DC microgrid[J]. Electric Power Automation Equipment, 2015, 35(10): 51–57 [3] 贾利虎, 朱永强, 杜少飞, 等. 交直流微电网互联变流器控制策略[J]. 电力系统自动化, 2016, 40(24): 98–104 JIA Lihu, ZHU Yongqiang, DU Shaofei, et al. Control strategy of interlinked converter for AC/DC microgrid[J]. Automation of Electric Power Systems, 2016, 40(24): 98–104 [4] LOH P C, LI D, CHAI Y K, et al. Autonomous operation of hybrid microgrid with AC and DC subgrids[J]. IEEE Transactions on Power Electronics, 2013, 28(5): 2214–2223. [5] 唐磊, 曾成碧, 苗虹, 等. 交直流混合微电网中AC/DC双向功率变流器的新控制策略[J]. 电力系统保护与控制, 2013, 41(14): 13–18 TANG Lei, ZENG Chengbi, MIAO Hong, et al. One novel control strategy of the AC/DC bi-directional power converter in micro-grid[J]. Power System Protection and Control, 2013, 41(14): 13–18 [6] 夏祥武, 田梦瑶. 风电并网一次调频控制性能研究[J]. 电气传动, 2021, 51(5): 70–75 XIA Xiangwu, TIAN Mengyao. Research on the performance of primary frequency control of wind power grid connected[J]. Electric Drive, 2021, 51(5): 70–75 [7] GAO Z, LI C H, TENG W J, et al. Hybrid microgrid load distribution and DC voltage control[C]//2019 IEEE 3 rd Conference on Energy Internet and Energy System Integration. Changsha, China. IEEE, 2019: 1933–1937. [8] 刘佳易, 秦文萍, 韩肖清, 等. 交直流双向功率变换器的改进下垂控制策略[J]. 电网技术, 2014, 38(2): 304–310 LIU Jiayi, QIN Wenping, HAN Xiaoqing, et al. Control method of interlink-converter in DC microgrid[J]. Power System Technology, 2014, 38(2): 304–310 [9] 谢文超, 朱永强, 杜少飞, 等. 交直流混合微电网中互联变流器功率控制[J]. 电力建设, 2016, 37(10): 9–15 XIE Wenchao, ZHU Yongqiang, DU Shaofei, et al. Power control of interlinking converter in AC/DC hybrid microgrid[J]. Electric Power Construction, 2016, 37(10): 9–15 [10] EGHTEDARPOUR N, FARJAH E. Power control and management in a hybrid AC/DC microgrid[J]. IEEE Transactions on Smart Grid, 2014, 5(3): 1494–1505. [11] 高泽, 杨建华, 季宇, 等. 交直流混合微电网接口变换器双向下垂控制[J]. 南方电网技术, 2015, 9(5): 82–87 GAO Ze, YANG Jianhua, JI Yu, et al. Bidirectional droop control of AC/DC hybrid microgrid interlinking converter[J]. Southern Power System Technology, 2015, 9(5): 82–87 [12] 朱永强, 王福源, 赵娜, 等. 主从控制混合微电网中互联变流器控制策略[J]. 电力建设, 2018, 39(8): 102–110 ZHU Yongqiang, WANG Fuyuan, ZHAO Na, et al. Control strategy of inter-linking converter in hybrid microgrid under master-slave control[J]. Electric Power Construction, 2018, 39(8): 102–110 [13] 薛广宇. 基于虚拟同步发电机的船舶微源逆变器仿真研究[D]. 大连: 大连海事大学, 2015. XUE Guangyu. Simulation and research on marine micro-source inverter based on the virtual synchronous generator[D]. Dalian: Dalian Maritime University, 2015. [14] 贾利虎. 交直流混合微电网拓扑与控制策略研究[D]. 北京: 华北电力大学, 2017. JIA Lihu. Research on topology and control strategy of the hybrid AC/DC microgrid[D]. Beijing: North China Electric Power University, 2017. [15] 宋平岗, 朱维昌, 戈旺. 基于微分平坦理论的单相PWM整流器直接功率控制[J]. 电力系统保护与控制, 2017, 45(5): 38–44 SONG Pinggang, ZHU Weichang, GE Wang. Differential flatness based direct power control for single-phase PWM rectifier[J]. Power System Protection and Control, 2017, 45(5): 38–44 [16] 宋平岗, 陈欢, 吴继珍. 并联型有源电力滤波器功率平坦控制策略[J]. 电力电容器与无功补偿, 2017, 38(3): 19–25 SONG Pinggang, CHEN Huan, WU Jizhen. Power flatness control strategy for shunt active power filter[J]. Power Capacitor & Reactive Power Compensation, 2017, 38(3): 19–25 [17] 宋平岗, 周振邦, 林家通, 等. 基于微分平坦理论的MMC-RPC控制器设计[J]. 机车电传动, 2017(3): 14–19,37 SONG Pinggang, ZHOU Zhenbang, LIN Jiatong, et al. Design of controller for MMC-RPC based on differential flatness control theory[J]. Electric Drive for Locomotives, 2017(3): 14–19,37 [18] 周鹏辉. 基于MMC-MTDC的牵引供电系统建模及仿真研究[D]. 南昌: 华东交通大学, 2020. ZHOU Penghui. Modelling and simulation research on traction power supply system based on MMC-MTDC[D]. Nanchang: East China Jiaotong University, 2020. [19] SHAHIN A, HINAJE M, MARTIN J P, et al. High voltage ratio DC–DC converter for fuel-cell applications[J]. IEEE Transactions on Industrial Electronics, 2010, 57(12): 3944–3955. [20] PAYMAN A, PIERFEDERICI S, MEIBODY-TABAR F. Energy management in a fuel cell/supercapacitor multisource/multiload electrical hybrid system[J]. IEEE Transactions on Power Electronics, 2009, 24(12): 2681–2691.
|