[1] YE H, PEI W, QI Z. Analytical modeling of inertial and droop responses from a wind farm for short-term frequency regulation in power systems[J]. IEEE Transactions on Power Systems, 2016, 31(5): 3414–3423. [2] 鲁宗相, 叶一达, 郭莉, 等. 电力电子化电力系统的调频挑战与多层级协调控制框架[J]. 中国电力, 2019, 52(4): 8–17, 110 LU Zongxiang, YE Yida, GUO Li, et al. Frequency regulation challenge of power electronics dominated power systems and its new multi-level coordinated control framework[J]. Electric Power, 2019, 52(4): 8–17, 110 [3] 王瑞明, 徐浩, 秦世耀, 等. 风电场一次调频分层协调控制研究与应用[J]. 电力系统保护与控制, 2019, 47(14): 50–58 WANG Ruiming, XU Hao, QIN Shiyao, et al. Research and application on primary frequency regulation of wind farms based on hierarchical coordinated control[J]. Power System Protection and Control, 2019, 47(14): 50–58 [4] 蔡婷婷, 刘宿彤. 风电参与电网调频技术回顾与展望[J]. 智慧电力, 2019, 47(3): 1-7–53 CAI Tingting, LIU Sutong. Sutong. Retrospect and prospect of technology research for wind farm participating in power grid frequency regulation[J]. Smart Power, 2019, 47(3): 1-7–53 [5] MORREN J, HAAN S W H D, KLING W L, et al. Wind turbines emulating inertia and supporting primary frequency control[J]. IEEE Transactions on Power Systems, 2006, 21(1): 433–434. [6] 田新首, 王伟胜, 迟永宁, 等. 基于双馈风电机组有效储能的变参数虚拟惯量控制[J]. 电力系统自动化, 2015, 39(5): 20–26 TIAN Xinshou, WANG Weisheng, CHI Yongning, et al. Variable parameter virtual inertia control based on effective energy storage of DFIG-based wind turbines[J]. Automation of Electric Power Systems, 2015, 39(5): 20–26 [7] RAMTHARAN G, EKANAYAKE J B, JENKINS N. Frequency support from doubly fed induction generator wind turbines[J]. IET Renewable Power Generation, 2007, 1(1): 3–9. [8] 姚亚鑫, 刘锋, 刘璋玮, 等. 面向长期调频的风机非线性下垂控制设计[J]. 电网技术, 2018, 42(6): 1845–1852 YAO Yaxin, LIU Feng, LIU Zhangwei, et al. Nonlinear droop control of VSWTs for sustained frequency regulation[J]. Power System Technology, 2018, 42(6): 1845–1852 [9] 郭小龙, 刘方蕾, 胥国毅, 等. 风电机组参与调频的虚拟惯量控制与快速频率控制[J]. 智慧电力, 2020, 48(12): 1–7 GUO Xiaolong, LIU Fanglei, XU Guoyi, et al. Virtual inertia control and fast frequency control of wind turbine participating in frequency regulation[J]. Smart Power, 2020, 48(12): 1–7 [10] 张昭遂, 孙元章, 李国杰, 等. 超速与变桨协调的双馈风电机组频率控制[J]. 电力系统自动化, 2011, 35(17): 20–25, 43 ZHANG Zhaosui, SUN Yuanzhang, LI Guojie, et al. Frequency regulation by doubly fed induction generator wind turbines based on coordinated overspeed control and pitch control[J]. Automation of Electric Power Systems, 2011, 35(17): 20–25, 43 [11] JAN V D V, DE Kooning J D M, MEERSMAN B, et al. Droop control as an alternative inertial response strategy for the synthetic inertia on wind turbines[J]. IEEE Transactions on Power Systems, 2016, 31(2): 1129–1138. [12] 刘巨, 姚伟, 文劲宇, 等. 大规模风电参与系统频率调整的技术展望[J]. 电网技术, 2014, 38(3): 638–646 LIU Ju, YAO Wei, WEN Jinyu, et al. Prospect of technology for large-scale wind farm participating into power grid frequency regulation[J]. Power System Technology, 2014, 38(3): 638–646 [13] 张旭, 陈云龙, 岳帅, 等. 风电参与电力系统调频技术研究的回顾与展望[J]. 电网技术, 2018, 42(6): 1793–1803 ZHANG Xu, CHEN Yunlong, YUE Shuai, et al. Retrospect and prospect of research on frequency regulation technology of power system by wind power[J]. Power System Technology, 2018, 42(6): 1793–1803 [14] XUE Y, TAI N. Review of contribution to frequency control through variable speed wind turbine[J]. Renewable Energy, 2011, 36(6): 1671–1677. [15] 张冠锋, 杨俊友, 孙峰, 等. 基于虚拟惯量和频率下垂控制的双馈风电机组一次调频策略[J]. 电工技术学报, 2017, 32(22): 225–232 ZHANG Guanfeng, YANG Junyou, SUN Feng, et al. Primary frequency regulation strategy of DFIG based on virtual inertia and frequency droop control[J]. Transactions of China Electrotechnical Society, 2017, 32(22): 225–232 [16] 陈宇航, 王刚, 侍乔明, 等. 一种新型风电场虚拟惯量协同控制策略[J]. 电力系统自动化, 2015, 39(5): 27–33 CHEN Yuhang, WANG Gang, SHI Qiaoming, et al. A new coordinated virtual inertia control strategy for wind farms[J]. Automation of Electric Power Systems, 2015, 39(5): 27–33 [17] 彭勃, 张峰, 梁军. 考虑风速分区的风储系统短期频率响应协同控制策略[J]. 电力系统自动化, 2018, 42(8): 57–65 PENG Bo, ZHANG Feng, LIANG Jun. Coordinated control strategy for short-term frequency response of wind-energy storage system considering wind speed partition[J]. Automation of Electric Power Systems, 2018, 42(8): 57–65 [18] CHANG-CHIEN L R, HUNG C M, YIN Y C. Dynamic reserve allocation for system contingency by DFIG wind farms[J]. IEEE Transactions on Power Systems, 2008, 23(2): 729–736. [19] 范冠男, 刘吉臻, 孟洪民, 等. 电网限负荷条件下风电场一次调频策略[J]. 电网技术, 2016, 40(7): 2030–2037 FAN Guannan, LIU Jizhen, MENG Hongmin, et al. Primary frequency control strategy for wind farms under output-restricted condition[J]. Power System Technology, 2016, 40(7): 2030–2037 [20] ANDERSON P M, MIRHEYDAR M. A low-order system frequency response model[J]. IEEE Transactions on Power Systems, 1990, 5(3): 720–729. [21] 唐西胜, 苗福丰, 齐智平, 等. 风力发电的调频技术研究综述[J]. 中国电机工程学报, 2014, 34(25): 4304–4314 TANG Xisheng, MIAO Fufeng, QI Zhiping, et al. Survey on frequency control of wind power[J]. Proceedings of the CSEE, 2014, 34(25): 4304–4314
|