中国电力 ›› 2023, Vol. 56 ›› Issue (9): 66-78.DOI: 10.11930/j.issn.1004-9649.202306099
• 全国统一电力市场发展路径设计与关键技术 • 上一篇 下一篇
任景1, 高敏1, 程松1, 张小东1, 刘友波2
收稿日期:
2023-06-15
修回日期:
2023-08-01
出版日期:
2023-09-28
发布日期:
2023-09-20
作者简介:
任景(1982-),女,硕士,高级工程师,从事调度计划和新能源管理工作,E-mail:renj@nw.sgcc.com.cn;刘友波(1983-),男,通信作者,博士,教授,从事电力市场、电力供需研究,E-mail:liuyoubo@scu.edu.cn
基金资助:
REN Jing1, GAO Min1, CHENG Song1, ZHANG Xiaodong1, LIU Youbo2
Received:
2023-06-15
Revised:
2023-08-01
Online:
2023-09-28
Published:
2023-09-20
Supported by:
摘要: 受新能源“无稳定电力、有基础电量”的发电特性影响,西北地区电力电量平衡特性呈现新形态,电网同时面临腰荷时段的新能源消纳压力及早晚高峰的保供压力。基于高比例新能源电网实际运行数据及历史统计数据,分析了西北地区电力电量平衡的风险特性,梳理了国内外电力系统面向区域供需平衡的关键技术及配套市场机制,立足西北地区源网荷发展态势,提出了兼顾电力可靠供应和新能源高效消纳的西北电网电力电量平衡措施与建议。
任景, 高敏, 程松, 张小东, 刘友波. 面向新能源不确定性的西北电力电量平衡机制[J]. 中国电力, 2023, 56(9): 66-78.
REN Jing, GAO Min, CHENG Song, ZHANG Xiaodong, LIU Youbo. A Balance Method for Power Supply-Demand Adapting to High Uncertainties of Renewable Energy in Northwest Power Grid[J]. Electric Power, 2023, 56(9): 66-78.
[1] 康重庆, 姚良忠. 高比例可再生能源电力系统的关键科学问题与理论研究框架[J]. 电力系统自动化, 2017, 41(9): 2–11 KANG Chongqing, YAO Liangzhong. Key scientific issues and theoretical research framework for power systems with high proportion of renewable energy[J]. Automation of Electric Power Systems, 2017, 41(9): 2–11 [2] 吴应双, 冯祥勇, 王寅, 等. 一种考虑新能源电站出力不确定性的采样鲁棒无功优化方法[J]. 电力科学与技术学报, 2023, 38(2): 84–95 WU Yingshuang, FENG Xiangyong, WANG Yin, et al. A sample robust reactive power optimization approach considering the power output uncertainty of renewable energy stations[J]. Journal of Electric Power Science and Technology, 2023, 38(2): 84–95 [3] 杨金海, 武家辉, 王海云, 等. 不同渗透率下多种新能源电力系统动态安全域分析[J]. 电力建设, 2022, 43(4): 58–68 YANG Jinhai, WU Jiahui, WANG Haiyun, et al. Dynamic security region analysis of power system under different penetration rate of new energy[J]. Electric Power Construction, 2022, 43(4): 58–68 [4] 李明节, 陈国平, 董存, 等. 新能源电力系统电力电量平衡问题研究[J]. 电网技术, 2019, 43(11): 3979–3986 LI Mingjie, CHEN Guoping, DONG Cun, et al. Research on power balance of high proportion renewable energy system[J]. Power System Technology, 2019, 43(11): 3979–3986 [5] 孙骁强, 张小奇, 张光儒, 等. 考虑跨区直流调峰的新能源参与电力平衡可信容量提升方法研究[J]. 电网技术, 2023, 47(3): 878–886 SUN Xiaoqiang, ZHANG Xiaoqi, ZHANG Guangru, et al. Credible capacity improvement with new energy participating in power balance considering cross-regional DC peak shaving[J]. Power System Technology, 2023, 47(3): 878–886 [6] 贺宜恒, 周明, 武昭原, 等. 国外典型电力平衡市场的运作模式及其对中国的启示[J]. 电网技术, 2018, 42(11): 3520–3528 HE Yiheng, ZHOU Ming, WU Zhaoyuan, et al. Study on operation mechanism of foreign representative balancing markets and its enlightenment for China[J]. Power System Technology, 2018, 42(11): 3520–3528 [7] 张振宇, 孙骁强, 万筱钟, 等. 基于统计学特征的新能源纳入西北电网备用研究[J]. 电网技术, 2018, 42(7): 2047–2054 ZHANG Zhenyu, SUN Xiaoqiang, WAN Xiaozhong, et al. Research on reserve of northwest power grid considering renewable energy based on statistical characteristics[J]. Power System Technology, 2018, 42(7): 2047–2054 [8] 文云峰, 杨游航, 邢鹏翔, 等. 多维因素制约下新能源消纳能力评估方法研究综述[J/OL]. 中国电机工程学报: 1–25[2023-06-05]. DOI: 10.13334/j. 0258-8013. pcsee. 223390. WEN Yunfeng, YANG Youhang, XING Pengxiang, et al. Review on the new energy accommodation capability evaluation methods considering muti-dimensional factors[J/OL]. Proceedings of the CSEE: 1–25[2023-06-05]. DOI:10.13334/j.0258-8013.pcsee.223390. [9] 张振宇, 王文倬, 马晓伟, 等. 基于风险控制的新能源纳入电力系统备用方法[J]. 电网技术, 2020, 44(9): 3375–3382 ZHANG Zhenyu, WANG Wenzhuo, MA Xiaowei, et al. Reserve of power system considering renewable energy based on risk control[J]. Power System Technology, 2020, 44(9): 3375–3382 [10] 万灿, 宋永华. 新能源电力系统概率预测理论与方法及其应用[J]. 电力系统自动化, 2021, 45(1): 2–16 WAN Can, SONG Yonghua. Theories, methodologies and applications of probabilistic forecasting for power systems with renewable energy sources[J]. Automation of Electric Power Systems, 2021, 45(1): 2–16 [11] WAN C, WANG J H, LIN J, et al. Nonparametric prediction intervals of wind power via linear programming[J]. IEEE Transactions on Power Systems, 2018, 33(1): 1074–1076. [12] KHORRAMDEL B, CHUNG C Y, SAFARI N, et al. A fuzzy adaptive probabilistic wind power prediction framework using diffusion kernel density estimators[J]. IEEE Transactions on Power Systems, 2018, 33(6): 7109–7121. [13] 蒲天骄, 陈乃仕, 葛贤军, 等. 电力电量平衡评价指标体系及其综合评估方法研究[J]. 电网技术, 2015, 39(1): 250–256 PU Tianjiao, CHEN Naishi, GE Xianjun, et al. Research on evaluation index system and synthetical evaluation method for balance of electric power and energy[J]. Power System Technology, 2015, 39(1): 250–256 [14] 刘明浩, 王丽萍, 王渤权, 等. 基于出力不均匀性的火电站电力电量平衡方法[J]. 电力自动化设备, 2017, 37(11): 162–168 LIU Minghao, WANG Liping, WANG Boquan, et al. Power and energy balance method of thermal power station based on uneven output[J]. Electric Power Automation Equipment, 2017, 37(11): 162–168 [15] 夏澍, 葛晓琳, 季海华, 等. 基于机会约束规划的电力电量平衡分析[J]. 电力系统保护与控制, 2017, 45(18): 102–107 XIA Shu, GE Xiaolin, JI Haihua, et al. Power supply-demand balancing analysis based on chance-constrained programming[J]. Power System Protection and Control, 2017, 45(18): 102–107 [16] 于丹文, 杨明, 翟鹤峰, 等. 鲁棒优化在电力系统调度决策中的应用研究综述[J]. 电力系统自动化, 2016, 40(7): 134–143, 148 YU Danwen, YANG Ming, ZHAI Hefeng, et al. An overview of robust optimization used for power system dispatch and decision-making[J]. Automation of Electric Power Systems, 2016, 40(7): 134–143, 148 [17] WANG J H, SHAHIDEHPOUR M, LI Z Y. Security-constrained unit commitment with volatile wind power generation[J]. IEEE Transactions on Power Systems, 2008, 23(3): 1319–1327. [18] YANG L, HE M, VITTAL V, et al. Stochastic optimization-based economic dispatch and interruptible load management with increased wind penetration[J]. IEEE Transactions on Smart Grid, 2016, 7(2): 730–739. [19] 杨胜春, 刘建涛, 姚建国, 等. 多时间尺度协调的柔性负荷互动响应调度模型与策略[J]. 中国电机工程学报, 2014, 34(22): 3664–3673 YANG Shengchun, LIU Jiantao, YAO Jianguo, et al. Model and strategy for multi-time scale coordinated flexible load interactive scheduling[J]. Proceedings of the CSEE, 2014, 34(22): 3664–3673 [20] 包宇庆, 王蓓蓓, 李扬, 等. 考虑大规模风电接入并计及多时间尺度需求响应资源协调优化的滚动调度模型[J]. 中国电机工程学报, 2016, 36(17): 4589–4600 BAO Yuqing, WANG Beibei, LI Yang, et al. Rolling dispatch model considering wind penetration and multi-scale demand response resources[J]. Proceedings of the CSEE, 2016, 36(17): 4589–4600 [21] WU H, SHAHIDEHPOUR M, LI Z, et al. Chance-constrained day-ahead scheduling in stochastic power system operation[J]. IEEE Transactions on Power Systems, 2014, 29(4): 1583–1591. [22] 杨娜娜, 张建成, 顾志东. 消纳大规模风电的备用容量在线滚动决策与模型[J]. 现代电力, 2015, 32(1): 52–58 YANG Nana, ZHANG Jiancheng, GU Zhidong. An online rolling dispatch method and model of spinning reserve for accommodating large-scale wind power[J]. Modern Electric Power, 2015, 32(1): 52–58 [23] 吴俊, 薛禹胜, 舒印彪, 等. 大规模可再生能源接入下的电力系统充裕性优化(二)多等级备用的协调优化[J]. 电力系统自动化, 2019, 43(10): 19–26 WU Jun, XUE Yusheng, SHU Yinbiao, et al. Adequacy optimization for a large-scale renewable energy integrated power system part two collaborative optimization of multi-grade reserve[J]. Automation of Electric Power Systems, 2019, 43(10): 19–26 [24] 姚瑶, 于继来. 计及风电备用风险的电力系统多目标混合优化调度[J]. 电力系统自动化, 2011, 35(22): 118–124 YAO Yao, YU Jilai. Multi-objective hybrid optimal dispatch of power systems considering reserve risk due to wind power[J]. Automation of Electric Power Systems, 2011, 35(22): 118–124 [25] PHILPOTT A, PETTERSEN E. Optimizing demand-Side bids in day-Ahead electricity markets[J]. IEEE Transactions on Power System, 2006, 21(2): 488–498. [26] WANG J, REDONDO N E, GALIANA F D. Demand-side reserve offers in joint energy/reserve electricity markets[J]. IEEE Transactions on Power Systems, 2003, 18(4): 1300–1306. [27] NGUYEN D T, NEGNEVITSKY M, GROOT de M. Pool-based demand response exchange-concept and modeling[J]. IEEE Transactions on Power Systems, 2011, 26(3): 1677–1685. [28] NGUYEN D T, NEGNEVITSKY M, DE GROOT M. Walrasian market clearing for demand response exchange[J]. IEEE Transactions on Power Systems, 2012, 27(1): 535–544. [29] ZHONG H, XIE L, XIA Q. Coupon incentive-based demand response: theory and case study[J]. IEEE Transactions on Power System, 2013, 28(2): 1266–1276. [30] MOHSENIAN-RAD A H, WONG V W S, JATSKEVICH J, et al. Autonomous demand-side management based on game-theoretic energy consumption scheduling for the future smart grid[J]. IEEE Transactions on Smart Grid, 2010, 1(3): 320–331. [31] Elexon. A guide to electricity imbalance pricing in Great Britain [EB/OL]. [2018-05-04] [2022-06-14]. https://bscdocs.elexon.co.uk/guidance-notes/imbalance-pricing-guidance. [32] 肖定垚, 王承民, 曾平良, 等. 电力系统灵活性及其评价综述[J]. 电网技术, 2014, 38(6): 1569–1576 XIAO Dingyao, WANG Chengmin, ZENG Pingliang, et al. A survey on power system flexibility and its evaluations[J]. Power System Technology, 2014, 38(6): 1569–1576 [33] 张馨瑜, 陈启鑫, 葛睿, 等. 考虑灵活块交易的电力现货市场出清模型[J]. 电力系统自动化, 2017, 41(24): 35–41 ZHANG Xinyu, CHEN Qixin, GE Rui, et al. Clearing model of electricity spot market considering flexible block orders[J]. Automation of Electric Power Systems, 2017, 41(24): 35–41 [34] SREENU S, SUMANTH Y, KAILASH C S, et al. Flexible ramp products: a solution to enhance power system flexibility[J]. Renewable and Sustainable Energy Reviews, 2022, 162: 112429. [35] MISO. Ramp Product Enhancements [EB/OL]. [2022-12-1][2023-06-11].https://cdn.misoenergy.org/20221201%20 MSC%20 Item%2006%20 Ramp%20 Product%20 Enhancements627169.pdf. [36] 程浩忠, 李隽, 吴耀武, 等. 考虑高比例可再生能源的交直流输电网规划挑战与展望[J]. 电力系统自动化, 2017, 41(9): 19–27 CHENG Haozhong, LI Jun, WU Yaowu, et al. Challenges and prospects for AC/DC transmission expansion planning considering high proportion of renewable energy[J]. Automation of Electric Power Systems, 2017, 41(9): 19–27 [37] 鲁宗相, 李海波, 乔颖. 含高比例可再生能源电力系统灵活性规划及挑战[J]. 电力系统自动化, 2016, 40(13): 147–158 LU Zongxiang, LI Haibo, QIAO Ying. Power system flexibility planning and challenges considering high proportion of renewable energy[J]. Automation of Electric Power Systems, 2016, 40(13): 147–158 [38] 杨修宇, 穆钢, 柴国峰, 等. 考虑灵活性供需平衡的源-储-网一体化规划方法[J]. 电网技术, 2020, 44(9): 3238–3246 YANG Xiuyu, MU Gang, CHAI Guofeng, et al. Source-storage-grid integrated planning considering flexible supply-demand balance[J]. Power System Technology, 2020, 44(9): 3238–3246 [39] 赵东元, 胡楠, 傅靖, 等. 提升新能源电力系统灵活性的中国实践及发展路径研究[J]. 电力系统保护与控制, 2020, 48(24): 1–8 ZHAO Dongyuan, HU Nan, FU Jing, et al. Research on the practice and road map of enhancing the flexibility of a new generation power system in China[J]. Power System Protection and Control, 2020, 48(24): 1–8 [40] 徐唐海, 鲁宗相, 乔颖, 等. 源荷储多类型灵活性资源协调的高比例可再生能源电源规划[J]. 全球能源互联网, 2019, 2(1): 27–34 XU Tanghai, LU Zongxiang, QIAO Ying, et al. High penetration of renewable energy power planning considering coordination of source-load-storage multi-type flexible resources[J]. Journal of Global Energy Interconnection, 2019, 2(1): 27–34 [41] HOLTTINEN H, TUOHY A, MILLIGAN M, et al. The flexibility workout: managing variable resources and assessing the need for power system modification[J]. IEEE Power and Energy Magazine, 2013, 11(6): 53–62. [42] MEJÍA-GIRALDO D, MCCALLEY J D. Maximizing future flexibility in electric generation portfolios[J]. IEEE Transactions on Power Systems, 2014, 29(1): 279–288. [43] MARTÍNEZ CESEÑA E A, CAPUDER T, MANCARELLA P. Flexible distributed multienergy generation system expansion planning under uncertainty[J]. IEEE Transaction on Smart Grid, 2015, 7(1): 1–10. [44] MA J, SILVA V, BELHOMME R, et al. Evaluating and planning flexibility in sustainable power systems[J]. IEEE Transactions on Sustainable Energy, 2013, 4(1): 200–209. [45] 关于开展“风光水火储一体化”“源网荷储一体化”的指导意见(征求意见稿)[J]. 大众用电, 2020, 35(9): 6–8. [46] 王青, 杨悦, 汪宁渤, 等. 风电与火电“打捆”外送系统频率调控策略研究[J]. 中国电力, 2014, 47(3): 6–13 WANG Qing, YANG Yue, WANG Ningbo, et al. Study on the frequency adjustment characteristics of wind power uniting thermal power outgoing system[J]. Electric Power, 2014, 47(3): 6–13 [47] 吴杰康, 史美娟, 陈国通, 等. 区域电力系统最优备用容量模型与算法[J]. 中国电机工程学报, 2009, 29(1): 14–20 WU Jiekang, SHI Meijuan, CHEN Guotong, et al. Immune genetic algorithms for modeling optimal reserve capacity of interconnected regional power systems[J]. Proceedings of the CSEE, 2009, 29(1): 14–20 [48] 王木. 含风电场的互联电力系统跨区备用优化决策研究[D]. 北京: 华北电力大学(北京), 2016. WANG Mu. Research on reserve optimization dispatch method for multi-area interconnected power system with wind power integration [D]. Beijing: North China Electric Power University, 2016. [49] AHMADI-KHATIR A, BOZORG M, CHERKAOUI R. Probabilistic spinning reserve provision model in multi-control zone power system[J]. IEEE Transactions on Power Systems, 2013, 28(3): 2819–2829. [50] 曹宇峰, 陈启鑫, 夏清, 等. 基于风险预控的多区域电力网络能量-备用联合优化[J]. 电网技术, 2014, 38(8): 2155–2160 CAO Yufeng, CHEN Qixin, XIA Qing, et al. Energy-reserve co-optimization in multi-area power systems towards risk precaution target[J]. Power System Technology, 2014, 38(8): 2155–2160 [51] 裴哲义, 王彩霞, 和青, 等. 对中国新能源消纳问题的分析与建议[J]. 中国电力, 2016, 49(11): 1–7 PEI Zheyi, WANG Caixia, HE Qing, et al. Analysis and suggestions on renewable energy integration problems in China[J]. Electric Power, 2016, 49(11): 1–7 [52] 郝倛晗, 裘智峰, 曹胡辉, 等. 基于多级市场驱动的风电协同消纳策略[J]. 电网技术, 2020, 44(7): 2590–2600 HAO Qihan, QIU Zhifeng, CAO Huhui, et al. Multi-level market-driven coordination strategy for wind power accommodation[J]. Power System Technology, 2020, 44(7): 2590–2600 [53] 叶晨, 牟玉亭, 王蓓蓓, 等. 考虑动态碳交易曲线的电-碳市场出清模型及节点边际电价构成机理分析[J]. 电网技术, 2023, 47(2): 613–624 YE Chen, MOU Yuting, WANG Beibei, et al. Mechanism of locational marginal prices and clearing model of electricity and carbon market considering dynamic carbon trading curve[J]. Power System Technology, 2023, 47(2): 613–624 [54] 李吉峰, 邹楠, 李卫东, 等. 计及需求灵活性的地区绿色证书、碳排放权及电力联合交易分析[J/OL]. 电网技术: 1–11[2023-06-21]. DOI:10.13335/j.1000-3673.pst.2022.2484. LI Jifeng, ZOU Nan, LI Weidong, et al. Analysis of local green power certificate, carbon emission and electricity joint trading considering demand flexibility[J/OL]. Power System Technology:1–11[2023-06-21]. DOI:10.13335/j.1000-3673.pst.2022.2484. [55] 王子恒, 鲍海, 张峰, 等. 考虑碳交易收益和网损成本的发电权交易优化模型[J]. 电力自动化设备, 2023, 43(5): 23–29 WANG Ziheng, BAO Hai, ZHANG Feng, et al. Optimization model of power generation right trading considering carbon trading income and network loss cost[J]. Electric Power Automation Equipment, 2023, 43(5): 23–29 |
[1] | 高政南, 姜楠, 陈启鑫, 徐江, 王海利, 辛力, 徐青贵. 德国电力市场能源转型建设及启示[J]. 中国电力, 2024, 57(6): 204-214. |
[2] | 李咸善, 丁胜彪, 李飞, 李欣. 考虑水电调节费用补偿的风光水联盟优化调度策略[J]. 中国电力, 2024, 57(5): 26-38. |
[3] | 李汶龙, 周云, 罗祾, 陈甜甜, 冯冬涵. 计及现货交易的电能量交易全环节用电碳责任分摊[J]. 中国电力, 2024, 57(5): 99-112. |
[4] | 谭虎, 王小亮, 徐亭亭, 赵珂, 宿连超, 张文玉, 辛征. 风光沼储交直流混合农村微电网经济技术优化[J]. 中国电力, 2024, 57(3): 27-33. |
[5] | 郭娟娟, 沈迪, 童朴, 闫琨, 张小凡, 何昉. 中国三代核电经济评价方法与参数优化[J]. 中国电力, 2024, 57(3): 206-212, 223. |
[6] | 高志远, 庄卫金, 耿建, 李峰, 薛必克, 杨晓雷, 白柯鞠. 基于经济人假设的负荷侧资源市场化调节作用机理分析[J]. 中国电力, 2024, 57(3): 213-223. |
[7] | 李超英, 檀勤良. 基于智能体建模的新型电力系统下火电企业市场交易策略[J]. 中国电力, 2024, 57(2): 212-225. |
[8] | 仪忠凯, 侯朗博, 徐英, 吴永峰, 李志民, 吴俊飞, 冯腾, 韩柳. 市场环境下灵活性资源虚拟电厂聚合调控关键技术综述[J]. 中国电力, 2024, 57(12): 82-96. |
[9] | 孙志媛, 彭博雅, 孙艳. 考虑多能互补的电力电量平衡优化调度策略[J]. 中国电力, 2024, 57(1): 115-122. |
[10] | 刘硕, 张梦晗, 于松泰, 向明旭, 杨知方. 计及跨区备用辅助服务互济的互联电网出清方法[J]. 中国电力, 2023, 56(9): 35-47. |
[11] | 许凌, 张希鹏, 曹益奇, 张丙金, 董成, 谭振飞. 考虑备用互济的省间现货电能与备用耦合出清模型[J]. 中国电力, 2023, 56(9): 48-56. |
[12] | 齐步洋, 卓振宇, 杜尔顺, 张宁, 康重庆. 考虑储能装置寿命的电网侧规模化电化学储能规划与评估方法[J]. 中国电力, 2023, 56(8): 1-9,47. |
[13] | 彭生江, 杨德州, 孙传帅, 袁铁江, 刘永成. 基于氢负荷需求的氢能系统容量规划[J]. 中国电力, 2023, 56(7): 13-20,32. |
[14] | 魏震波, 李银江, 张雯雯, 杨超. 基于改进Myerson值法的云储能双层优化运营模型[J]. 中国电力, 2023, 56(7): 198-206. |
[15] | 薛贵元, 吴垠, 诸晓骏, 谈健, 明昊. 计及用能权配额约束的发电商竞价策略双层优化方法[J]. 中国电力, 2023, 56(5): 51-61. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||