[1] 张恒旭, 曹永吉, 张怡, 等. 电力系统频率动态行为衍变与分析方法需求综述[J]. 山东大学学报(工学版), 2021, 51(5): 42–52 ZHANG Hengxu, CAO Yongji, ZHANG Yi, et al. Review of frequency dynamic behavior evolution and analysis method requirements of power system[J]. Journal of Shandong University (Engineering Science), 2021, 51(5): 42–52 [2] 张恒旭, 刘玉田. 电力系统动态频率响应时空分布特征量化描述[J]. 中国电机工程学报, 2009, 29(7): 64–70 ZHANG Hengxu, LIU Yutian. Quantitative description of space-time distribution features of dynamic frequency responses[J]. Proceedings of the CSEE, 2009, 29(7): 64–70 [3] JBA B. What does the GB power outage on 9 August 2019 tell us about the current state of decarbonised power systems?[J]. Energy Policy, 2020, 146: 111821. [4] ZHONG Q C, WEISS G. Synchronverters: inverters that mimic synchronous generators[J]. IEEE Transactions on Industrial Electronics, 2011, 58(4): 1259–1267. [5] 管敏渊. 虚拟同步机运行状态下并网储能系统自动能量控制[J]. 电力系统自动化, 2022, 46(23): 144–150 GUAN Minyuan. Automatic energy control of grid-connected energy storage system under virtual synchronous generator operation[J]. Automation of Electric Power Systems, 2022, 46(23): 144–150 [6] WEN Y F, LI W Y, HUANG G, et al. Frequency dynamics constrained unit commitment with battery energy storage[J]. IEEE Transactions on Power Systems, 2016, 31(6): 5115–5125. [7] 曾繁宏, 张俊勃. 电力系统惯性的时空特性及分析方法[J]. 中国电机工程学报, 2020, 40(1): 50–58, 373 ZENG Fanhong, ZHANG Junbo. Temporal and spatial characteristics of power system inertia and its analysis method[J]. Proceedings of the CSEE, 2020, 40(1): 50–58, 373 [8] KUNDUR P, PASERBA J, AJJARAPU V, et al. Definition and classification of power system stability IEEE/CIGRE joint task force on stability terms and definitions[J]. IEEE Transactions on Power Systems, 2004, 19(3): 1387–1401. [9] ANDERSON P M, MIRHEYDAR M. A low-order system frequency response model[J]. IEEE Transactions on Power Systems, 1990, 5(3): 720–729. [10] 张剑云, 李明节. 新能源高渗透的电力系统频率特性分析[J]. 中国电机工程学报, 2020, 40(11): 3498–3507 ZHANG Jianyun, LI Mingjie. Analysis of the frequency characteristic of the power systems highly penetrated by new energy generation[J]. Proceedings of the CSEE, 2020, 40(11): 3498–3507 [11] SHI Q X, LI F X, CUI H T. Analytical method to aggregate multi-machine SFR model with applications in power system dynamic studies[C]//2019 IEEE Power & Energy Society General Meeting (PESGM). Atlanta, GA, USA. IEEE, 2020: 1. [12] YE H, PEI W, QI Z P. Analytical modeling of inertial and droop responses from a wind farm for short-term frequency regulation in power systems[J]. IEEE Transactions on Power Systems, 2016, 31(5): 3414–3423. [13] 仉怡超, 闻达, 王晓茹, 等. 基于深度置信网络的电力系统扰动后频率曲线预测[J]. 中国电机工程学报, 2019, 39(17): 5095–5104, 5290 ZHANG Yichao, WEN Da, WANG Xiaoru, et al. A method of frequency curve prediction based on deep belief network of post-disturbance power system[J]. Proceedings of the CSEE, 2019, 39(17): 5095–5104, 5290 [14] 文云峰, 赵荣臻, 肖友强, 等. 基于多层极限学习机的电力系统频率安全评估方法[J]. 电力系统自动化, 2019, 43(1): 133–140 WEN Yunfeng, ZHAO Rongzhen, XIAO Youqiang, et al. Frequency safety assessment of power system based on multi-layer extreme learning machine[J]. Automation of Electric Power Systems, 2019, 43(1): 133–140 [15] 李常刚, 李华瑞, 刘玉田, 等. 大电网动态安全风险智能评估系统[J]. 电力系统自动化, 2019, 43(22): 67–75 LI Changgang, LI Huarui, LIU Yutian, et al. Intelligent assessment system for dynamic security risk of large-scale power grid[J]. Automation of Electric Power Systems, 2019, 43(22): 67–75 [16] TAYYEBI A, GROß D, ANTA A, et al. Frequency stability of synchronous machines and grid-forming power converters[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2020, 8(2): 1004–1018. [17] 孙华东, 王宝财, 李文锋, 等. 高比例电力电子电力系统频率响应的惯量体系研究[J]. 中国电机工程学报, 2020, 40(16): 5179–5192 SUN Huadong, WANG Baocai, LI Wenfeng, et al. Research on inertia system of frequency response for power system with high penetration electronics[J]. Proceedings of the CSEE, 2020, 40(16): 5179–5192 [18] 倪以信, 陈寿孙, 张宝霖. 动态电力系统的理论和分析[M]. 北京: 清华大学出版社, 2002. [19] TISSEUR F, MEERBERGEN K. The quadratic eigenvalue problem[J]. SIAM Review, 2001, 43(2): 235–286. [20] RYABCHENKO V N. The quadratic eigenvalue problem in electric power systems[J]. Automation and Remote Control, 2006, 67(5): 698–720. [21] TSAI S S, ZHANG L, PHADKE A G, et al. Study of global frequency dynamic behavior of large power systems[C]//IEEE PES Power Systems Conference and Exposition. New York, NY, USA. IEEE, 2005: 328–335. [22] KOETH F, RETIERE N. Spectral properties of dynamical power systems[C]//2019 IEEE Milan PowerTech. Milan, Italy. IEEE, 2019: 1–6. [23] PSARRAKOS P J, TSATSOMEROS M J. Numerical range: (in) a matrix nutshell[M]. Department of Mathematics, Washington State University, 2002. [24] GHOLAMI A, SUN X A. A fast certificate for power system small-signal stability[C]//2020 59 th IEEE Conference on Decision and Control (CDC). Jeju, Korea (South). IEEE, 2021: 3383–3388. [25] GOLDIN D. Stability and controllability of double integrator consensus systems in heterogeneous networks[D]. Technische Universitaet Berlin, 2013. [26] HORN R A, JOHNSON C R. Matrix analysis[M]. 2 nd ed. Cambridge: Cambridge University Press, 2013. [27] 高晖胜, 辛焕海, 黄林彬, 等. 新能源电力系统的共模频率分析及其特征量化[J]. 中国电机工程学报, 2021, 41(3): 890–900 GAO Huisheng, XIN Huanhai, HUANG Linbin, et al. Characteristic analysis and quantification of common mode frequency in power systems with high penetration of renewable resources[J]. Proceedings of the CSEE, 2021, 41(3): 890–900 |