[1] 许金华. 加快建设新型电力系统 科学有序推进实现“双碳”目标[N]. 科技日报, 2021-10-28(5). [2] 黎静华, 骆怡辰, 杨舒惠, 等. 可再生能源电力不确定性预测方法综述[J]. 高电压技术, 2021, 47(4): 1144–1157 LI Jinghua, LUO Yichen, YANG Shuhui, et al. Review of uncertainty forecasting methods for renewable energy power[J]. High Voltage Engineering, 2021, 47(4): 1144–1157 [3] 肖先勇, 郑子萱. “双碳”目标下新能源为主体的新型电力系统: 贡献、关键技术与挑战[J]. 工程科学与技术, 2022, 54(1): 47–59 XIAO Xianyong, ZHENG Zixuan. New power systems dominated by renewable energy towards the goal of emission peak & carbon neutrality: contribution, key techniques, and challenges[J]. Advanced Engineering Sciences, 2022, 54(1): 47–59 [4] ACERO J F C, VIAMONTE W R L, VELASQUEZ O C, et al. Modeling of the load duration curve considering the uncertainty of renewable generation and load. case study for the Peruvian power system[C]//2021 IEEE PES/IAS Power Africa. Nairobi, Kenya. IEEE, 2021: 1–5. [5] 易锦桂, 朱自伟, 谢青. 基于改进场景聚类算法的海上风电储能优化配置研究[J]. 中国电力, 2022, 55(12): 2–10 YI Jingui, ZHU Ziwei, XIE Qing. Research on optimal configuration of offshore wind power energy storage based on improved scene clustering algorithm[J]. Electric Power, 2022, 55(12): 2–10 [6] 张宁, 杜尔顺, 李晖. 强不确定环境下的电力系统优化规划[M]. 北京: 中国电力出版社, 2021: 16–39. [7] 董骁翀, 张姝, 李烨, 等. 电力系统中时序场景生成和约简方法研究综述[J]. 电网技术, 2023, 47(2): 709–721 DONG Xiaochong, ZHANG Shu, LI Ye, et al. Review of power system temporal scenario generation and reduction methods[J]. Power System Technology, 2023, 47(2): 709–721 [8] SURAJIT S, ROY G S, PARIMAL A. Multi-scenario based Bi-level coordinated planning of active distribution system under uncertain environment[J]. IEEE Transactions on Industry Applications, 2020, 56(1): 850–863. [9] 卢炳文, 魏震波, 魏平桉, 等. 考虑消纳风电的区域综合能源系统电转气与储能设备优化配置[J]. 智慧电力, 2021, 49(5): 7–14, 68 LU Bingwen, WEI Zhenbo, WEI Ping'an, et al. Optimal configuration of PtG and energy storage equipment in regional integrated energy system considering wind power consumption[J]. Smart Power, 2021, 49(5): 7–14, 68 [10] 艾力米努尔·库尔班, 谢娟英, 姚若侠. 融合最近邻矩阵与局部密度的自适应K-means聚类算法[J]. 计算机科学与探索, 2023, 17(2): 355–366 KUERBAN Ailiminuer, XIE Juanying, YAO Ruoxia, et al. Adaptive K-means algorithm combining nearest-neighbor matrix and local density[J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(2): 355–366 [11] 王帅, 杜欣慧, 姚宏民, 等. 面向含多种用户类型的负荷曲线聚类研究[J]. 电网技术, 2018, 42(10): 3401–3412 WANG Shuai, DU Xinhui, YAO Hongmin, et al. Research on load curve clustering with multiple user types[J]. Power System Technology, 2018, 42(10): 3401–3412 [12] 宋学伟, 刘玉瑶. 基于改进K-means聚类的风光发电场景划分[J]. 发电技术, 2020, 41(6): 625–630 SONG Xuewei, LIU Yuyao. Wind and photovoltaic generation scene division based on improved K-means clustering[J]. Power Generation Technology, 2020, 41(6): 625–630 [13] 郑焕坤, 曾凡斐, 傅钰, 等. 基于E-C-K-均值聚类和SOP优化的分布式电源双层规划[J]. 太阳能学报, 2022, 43(2): 127–135 ZHENG Huankun, ZENG Fanfei, FU Yu, et al. Bi-level distributed power planning based on e-c-k-means clustering and sop optimization[J]. Acta Energiae Solaris Sinica, 2022, 43(2): 127–135 [14] 要金铭, 赵书强, 韦子瑜, 等. 基于场景分析的电力系统日前调度及其快速求解方法[J]. 电力自动化设备, 2022, 42(9): 102–110 YAO Jinming, ZHAO Shuqiang, WEI Ziyu, et al. Day-ahead dispatch and its fast solution method of power system based on scenario analysis[J]. Electric Power Automation Equipment, 2022, 42(9): 102–110 [15] 白斌, 韩明亮, 林江, 等. 含风电和光伏的可再生能源场景削减方法[J]. 电力系统保护与控制, 2021, 49(15): 141–149 BAI Bin, HAN Mingliang, LIN Jiang, et al. Scenario reduction method of renewable energy including wind power and photovoltaic[J]. Power System Protection and Control, 2021, 49(15): 141–149 [16] 高鑫, 唐飞, 王晨旭, 等. 含分布式电源的配电网韧性与评估方法研究[J/OL]. 武汉大学学报(工学版), 2022: 1–8[2022-05-05].https://kns.cnki.net/kcms/detail/42.1675.T.20220505.1410.002.html. GAO Xin, TANG Fei, WANG Chenxu, et al. Research on resilience and assessment method of distribution network integrated with distributed generation[J/OL]. Engineering Journal of Wuhan University, 2022: 1–8[2022-05-05].https://kns.cnki.net/kcms/detail/42.1675.T.20220505.1410.002.html. [17] 党倩, 崔阿军, 尚闻博, 等. 采用欧式形态距离的负荷曲线近邻传播聚类方法[J]. 西安交通大学学报, 2022, 56(1): 165–176 DANG Qian, CUI Ajun, SHANG Wenbo, et al. Affinity propagation clustering method of typical load curve with euclidean morphological distance[J]. Journal of Xi’an Jiaotong University, 2022, 56(1): 165–176 [18] 余姚果, 梅亚东, 王现勋, 等. 基于改进SBR的风电出力典型场景提取与分析[J]. 武汉大学学报(工学版), 2021, 54(4): 346–353 YU Yaoguo, MEI Yadong, WANG Xianxun, et al. Extraction and analysis of wind power typical scenarios based on the improved SBR algorithm[J]. Engineering Journal of Wuhan University, 2021, 54(4): 346–353 [19] 卜凡鹏, 陈俊艺, 张琪祁, 等. 一种基于双层迭代聚类分析的负荷模式可控精细化识别方法[J]. 电网技术, 2018, 42(3): 903–913 BU Fanpeng, CHEN Junyi, ZHANG Qiqi, et al. A controllable refined recognition method of electrical load pattern based on bilayer iterative clustering analysis[J]. Power System Technology, 2018, 42(3): 903–913 [20] 王瑞峰, 王庆荣. 基于改进双层聚类多目标优化的配电网动态重构[J]. 电力系统保护与控制, 2019, 47(21): 92–99 WANG Ruifeng, WANG Qingrong. Multi-objective optimization of dynamic reconfiguration of distribution network based on improved Bilayer clustering[J]. Power System Protection and Control, 2019, 47(21): 92–99 [21] 夏飞, 张洁, 张浩, 等. 基于BIC准则和加权皮尔逊距离的居民负荷模式精细识别及预测[J]. 电子测量与仪器学报, 2020, 34(11): 33–42 XIA Fei, ZHANG Jie, ZHANG Hao, et al. Fine recognition and prediction of resident load pattern based on BIC criterion and weighted Pearson distance[J]. Journal of Electronic Measurement and Instrumentation, 2020, 34(11): 33–42 [22] 南钰, 宋瑞卿, 陈鹏, 等. 基于改进熵权-灰色关联法的配电网可靠性影响因素分析[J]. 电力系统保护与控制, 2019, 47(24): 101–107 NAN Yu, SONG Ruiqing, CHEN Peng, et al. Study on the factors influencing the reliability analysis in distribution network based on improved entropy weight gray correlation analysis algorithm[J]. Power System Protection and Control, 2019, 47(24): 101–107 [23] 杨晶显, 刘俊勇, 韩晓言, 等. 基于深度嵌入聚类的水光荷不确定性源场景生成方法[J]. 中国电机工程学报, 2020, 40(22): 7296–7306 YANG Jingxian, LIU Junyong, HAN Xiaoyan, et al. An uncertain hydro/PV/load typical scenarios generation method based on deep embedding for clustering[J]. Proceedings of the CSEE, 2020, 40(22): 7296–7306 [24] 王星华, 陈卓优, 彭显刚. 一种基于双层聚类分析的负荷形态组合识别方法[J]. 电网技术, 2016, 40(5): 1495–1501 WANG Xinghua, CHEN Zhuoyou, PENG Xiangang. A new combinational electrical load analysis method based on bilayer clustering analysis[J]. Power System Technology, 2016, 40(5): 1495–1501 [25] 唐锦, 张书怡, 吴秋伟, 等. 基于Copula函数与等概率逆变换的风电出力场景生成方法[J]. 电力工程技术, 2021, 40(6): 86–94 TANG Jin, ZHANG Shuyi, WU Qiuwei, et al. Wind power output scenario generation method based on Copula function and equal probability inverse transformation[J]. Electric Power Engineering Technology, 2021, 40(6): 86–94 [26] 赵书强, 要金铭, 李志伟. 基于改进K-means聚类和SBR算法的风电场景缩减方法研究[J]. 电网技术, 2021, 45(10): 3947–3954 ZHAO Shuqiang, YAO Jinming, LI Zhiwei. Wind power scenario reduction based on improved K-means clustering and SBR algorithm[J]. Power System Technology, 2021, 45(10): 3947–3954 [27] 丁明, 宋晓皖, 孙磊, 等. 考虑时空相关性的多风电场出力场景生成与评价方法[J]. 电力自动化设备, 2019, 39(10): 39–47 DING Ming, SONG Xiaowan, SUN Lei, et al. Scenario generation and evaluation method of multiple wind farms output considering spatial-temporal correlation[J]. Electric Power Automation Equipment, 2019, 39(10): 39–47 [28] 张辰毓, 许刚. 分布式多元随机动态场景生成及快速精准场景降维算法[J]. 电网技术, 2022, 46(2): 671–681 ZHANG Chenyu, XU Gang. Distributed multivariate random dynamic scenario generation and fast & accurate scenario simplified algorithm[J]. Power System Technology, 2022, 46(2): 671–681 [29] 唐海国, 张志丹, 康童, 等. 考虑场景聚类的配电网-天然气联合系统双层随机运行优化[J]. 现代电力, 2021, 38(6): 681–694 TANG Haiguo, ZHANG Zhidan, KANG Tong, et al. Bi-level stochastic operation optimization of distribution-natural gas combined system considering scenario clustering[J]. Modern Electric Power, 2021, 38(6): 681–694 |