中国电力 ›› 2024, Vol. 57 ›› Issue (8): 96-107.DOI: 10.11930/j.issn.1004-9649.202402058
周才期1(), 刘静利2(
), 孙鹏凯3(
), 张玉敏3(
)
收稿日期:
2024-02-22
出版日期:
2024-08-28
发布日期:
2024-08-24
作者简介:
周才期(1987—),男,硕士,高级工程师,从事水电及新能源调度运行与控制研究,E-mail:zhoucaiqi@sgcc.com.cn基金资助:
Caiqi ZHOU1(), Jingli LIU2(
), Pengkai SUN3(
), Yumin ZHANG3(
)
Received:
2024-02-22
Online:
2024-08-28
Published:
2024-08-24
Supported by:
摘要:
大范围极端天气影响下的分布式光伏波动事件对电力系统功率平衡问题影响显著,可能引起弃光、切负荷等风险事故。为此,提出了基于区间分析理论的分布式光伏波动事件多级区间滚动预警方法,以针对分布式光伏波动事件可能的危害程度进行滚动预警。首先,明晰电力系统应对分布式光伏波动的功率调控机理,并制定预警等级,确定不同功率控制手段能够应对的分布式光伏波动幅度区间,即不同预警等级对应的预警界限;然后,依据分布式光伏波动的概率密度,通过对各预警区间内的概率密度积分,计算各预警等级的概率;最后,分析不同时间尺度下光伏波动预测精度的差异水平,通过定时滚动预警校正结果,实现分布式光伏波动事件多级区间滚动预警。算例结果表明,该方法能够在确定各预警区间界限的同时,决策电力系统在不同系统运行状态和光伏波动事件下的预警结果,且与蒙特卡洛法预警结果的均方根误差仅为
周才期, 刘静利, 孙鹏凯, 张玉敏. 分布式光伏波动事件多级区间滚动预警方法[J]. 中国电力, 2024, 57(8): 96-107.
Caiqi ZHOU, Jingli LIU, Pengkai SUN, Yumin ZHANG. Multi-level Interval Rolling Warning Method for Distributed Photovoltaic Fluctuation Events[J]. Electric Power, 2024, 57(8): 96-107.
编号 | 最大允许 出力/MW | 最小允许 出力/MW | 最小开机 时间/h | 最小停机 时间/h | 爬坡速率/ (MW·h–1) | |||||
1 | 455 | 150 | 8 | 8 | 91.0 | |||||
2 | 455 | 150 | 8 | 8 | 91.0 | |||||
3 | 130 | 20 | 5 | 5 | 26.0 | |||||
4 | 130 | 20 | 5 | 5 | 26.0 | |||||
5 | 162 | 25 | 6 | 6 | 32.4 | |||||
6 | 80 | 20 | 3 | 3 | 16.0 | |||||
7 | 85 | 25 | 3 | 3 | 17.0 | |||||
8 | 55 | 10 | 1 | 1 | 11.0 | |||||
9 | 55 | 10 | 1 | 1 | 11.0 | |||||
10 | 55 | 10 | 1 | 1 | 11.0 |
表 1 算例采用的10机系统机组参数
Table 1 Generator parameters of 10-units power system used in case study
编号 | 最大允许 出力/MW | 最小允许 出力/MW | 最小开机 时间/h | 最小停机 时间/h | 爬坡速率/ (MW·h–1) | |||||
1 | 455 | 150 | 8 | 8 | 91.0 | |||||
2 | 455 | 150 | 8 | 8 | 91.0 | |||||
3 | 130 | 20 | 5 | 5 | 26.0 | |||||
4 | 130 | 20 | 5 | 5 | 26.0 | |||||
5 | 162 | 25 | 6 | 6 | 32.4 | |||||
6 | 80 | 20 | 3 | 3 | 16.0 | |||||
7 | 85 | 25 | 3 | 3 | 17.0 | |||||
8 | 55 | 10 | 1 | 1 | 11.0 | |||||
9 | 55 | 10 | 1 | 1 | 11.0 | |||||
10 | 55 | 10 | 1 | 1 | 11.0 |
1 |
吉兴全, 刘健, 叶平峰, 等. 计及灵活性与可靠性的综合能源系统优化调度[J]. 电力系统自动化, 2023, 47 (8): 132- 144.
DOI |
JI Xingquan, LIU Jian, YE Pingfeng, et al. Optimal scheduling of integrated energy system considering flexibility and reliability[J]. Automation of Electric Power Systems, 2023, 47 (8): 132- 144.
DOI |
|
2 | 周勤勇, 李根兆, 秦晓辉, 等. 能源革命下的电力系统范式转换分析[J]. 中国电力, 2024, 57 (3): 1- 11. |
ZHOU Qinyong, LI Genzhao, QIN Xiaohui, et al. Analysis of power system paradigm shift under energy revolution[J]. Electric Power, 2024, 57 (3): 1- 11. | |
3 | 张玉敏, 孙鹏凯, 孟祥剑, 等. 基于碳势-能源价格双响应的综合能源系统低碳经济调度[J]. 电力系统自动化, 2024, 48 (9): 21- 33. |
ZHANG Yumin, SUN Pengkai, MENG Xiangjian, et al. Low-carbon economic dispatching of integrated energy system based on dual response of carbon intensity and energy price[J]. Automation of Electric Power Systems, 2024, 48 (9): 21- 33. | |
4 | 孙启星, 张超, 李成仁, 等. “碳达峰、碳中和” 目标下的电力系统成本及价格水平预测[J]. 中国电力, 2023, 56 (1): 9- 16. |
SUN Qixing, ZHANG Chao, LI Chengren, et al. Prediction of power system cost and price level under the goal of "carbon peak and carbon neutralization"[J]. Electric Power, 2023, 56 (1): 9- 16. | |
5 | 张玉敏, 孙鹏凯, 吉兴全, 等. 考虑扩展碳排放流的综合能源系统低碳经济调度[J]. 电网技术, 2023, 47 (8): 3174- 3191. |
ZHANG Yumin, SUN Pengkai, JI Xingquan, et al. Low-carbon economic dispatch of integrated energy system with augmented carbon emission flow[J]. Power System Technology, 2023, 47 (8): 3174- 3191. | |
6 | 栗峰, 丁杰, 周才期, 等. 新型电力系统下分布式光伏规模化并网运行关键技术探讨[J]. 电网技术, 2024, 48 (1): 184- 199. |
LI Feng, DING Jie, ZHOU Caiqi, et al. Key technologies of large-scale grid-connected operation of distributed photovoltaic under new-type power system[J]. Power System Technology, 2024, 48 (1): 184- 199. | |
7 | 王翔宇, 陈武晖, 郭小龙, 等. 发电系统数字化研究综述[J]. 发电技术, 2024, 45 (1): 120- 141. |
WANG Xiangyu, CHEN Wuhui, GUO Xiaolong, et al. Review of research on the digitalization of power generation system[J]. Power Generation Technology, 2024, 45 (1): 120- 141. | |
8 | 邓序之, 刘淇, 叶傲霜, 等. 基于气象耦合特征分析及改进XGBoost算法的用户分布式光伏短期出力预测模型[J]. 南方电网技术, 2023, 17 (12): 80- 89. |
DENG Xuzhi, LIU Qi, YE Aoshuang, et al. Short-term output forecasting model of user side distributed photovoltaic based on meteorological coupling characteristics analysis and improved XGBoost algorithm[J]. Southern Power System Technology, 2023, 17 (12): 80- 89. | |
9 | 张玉敏, 孙鹏凯, 吉兴全, 等. 基于并行多维近似动态规划的综合能源系统动态经济调度[J]. 电力系统自动化, 2023, 47 (4): 60- 68. |
ZHANG Yumin, SUN Pengkai, JI Xingquan, et al. Dynamic economic dispatch for integrated energy system based on parallel multi-dimensional approximate dynamic programming[J]. Automation of Electric Power Systems, 2023, 47 (4): 60- 68. | |
10 | ZHANG Y, SUN P, JI X, et al. Low-carbon economic dispatch of integrated energy systems considering extended carbon emission flow[J/OL]. Journal of Modern Power Systems and Clean Energy: 1-12 (2024-05-31) [2024-06-21]. https://doi.org/10.35833/MPCE.2023.000743. |
11 |
IMPRAM S, VARBAK NESE S, ORAL B. Challenges of renewable energy penetration on power system flexibility: a survey[J]. Energy Strategy Reviews, 2020, 31, 100539.
DOI |
12 | 赵波, 肖传亮, 徐琛, 等. 基于渗透率的区域配电网分布式光伏并网消纳能力分析[J]. 电力系统自动化, 2017, 41 (21): 105- 111. |
ZHAO Bo, XIAO Chuanliang, XU Chen, et al. Penetration based accommodation capacity analysis on distributed photovoltaic connection in regional distribution network[J]. Automation of Electric Power Systems, 2017, 41 (21): 105- 111. | |
13 | 黎静华, 谢育天, 曾鸿宇, 等. 不确定优化调度研究综述及其在新型电力系统中的应用探讨[J]. 高电压技术, 2022, 48 (9): 3447- 3464. |
LI Jinghua, XIE Yutian, ZENG Hongyu, et al. Research review of uncertain optimal scheduling and its application in new-type power systems[J]. High Voltage Engineering, 2022, 48 (9): 3447- 3464. | |
14 | LI J C, LI J Y. Electric power supply and demand early warning based on PCA and SVM method[C]//2011 2nd International Conference on Intelligent Control and Information Processing. Harbin, China. IEEE, 2011: 1119–1123. |
15 | 魏新迟, 董佳, 时珊珊, 等. 基于云模型和随机森林的韧性城市电网风险预警模型[J]. 电力建设, 2024, 45 (5): 19- 28. |
WEI Xinchi, DONG Jia, SHI Shanshan, et al. Enhanced risk warning model for resilient urban power grid using cloud model and random forest[J]. Electric Power Construction, 2024, 45 (5): 19- 28. | |
16 | 张钢, 宗启航, 柯贤波, 等. 基于临界惯量和预想故障的含风电电力系统暂态功角稳定在线预警[J]. 电力系统保护与控制, 2023, 51 (16): 72- 83. |
ZHANG Gang, ZONG Qihang, KE Xianbo, et al. Online warning of transient power angle stability of power systems with wind power based on critical inertia and anticipated faults[J]. Power System Protection and Control, 2023, 51 (16): 72- 83. | |
17 | 卢明, 郭志明, 孟高军, 等. 输电线路气象风险精细化建模及气象灾害的在线预警防御策略[J]. 电力科学与技术学报, 2024, 39 (1): 208- 217. |
LU Ming, GUO Zhiming, MENG Gaojun, et al. Refined meteorological risk modeling of transmission lines and online warning and defense strategies of meteorological disasters[J]. Journal of Electric Power Science and Technology, 2024, 39 (1): 208- 217. | |
18 |
SI Z Y, YANG M, YU Y X, et al. Photovoltaic power forecast based on satellite images considering effects of solar position[J]. Applied Energy, 2021, 302, 117514.
DOI |
19 | 鲁宗相, 李海波, 乔颖. 高比例可再生能源并网的电力系统灵活性评价与平衡机理[J]. 中国电机工程学报, 2017, 37 (1): 9- 20. |
LU Zongxiang, LI Haibo, QIAO Ying. Flexibility evaluation and supply/demand balance principle of power system with high-penetration renewable electricity[J]. Proceedings of the CSEE, 2017, 37 (1): 9- 20. | |
20 | RYO E. A study of system frequency control of island power network using disturbance observer with adaptive behavior controller[C]//Proceedings of the International Conference on Electrical Engineering, 2009. |
21 | 汪海瑛, 白晓民. 并网光伏的短期运行备用评估[J]. 电力系统自动化, 2013, 37 (5): 55- 60. |
WANG Haiying, BAI Xiaomin. Short-term operating reserve assessment for grid-connected photovoltaic system[J]. Automation of Electric Power Systems, 2013, 37 (5): 55- 60. | |
22 | 赵晋泉, 孙中昊, 杨余华, 等. 分布式光伏参与调频辅助服务交易机制研究[J]. 全球能源互联网, 2020, 3 (5): 477- 486. |
ZHAO Jinquan, SUN Zhonghao, YANG Yuhua, et al. Study on frequency regulation ancillary service trading mechanisms for distributed photovoltaic generation[J]. Journal of Global Energy Interconnection, 2020, 3 (5): 477- 486. | |
23 | 陈灵, 黄兴华, 张功林, 等. 考虑削峰填谷的分布式电源集群协同控制方法[J]. 智慧电力, 2023, 51 (4): 8- 15. |
CHEN Ling, HUANG Xinghua, ZHANG Gonglin, et al. Distributed generations clusters collaborative control method considering peak load shifting[J]. Smart Power, 2023, 51 (4): 8- 15. | |
24 |
SHI J, CHEN Y B, CHENG X G, et al. Four-stage space-time hybrid model for distributed photovoltaic power forecasting[J]. IEEE Transactions on Industry Applications, 2023, 59 (1): 1129- 1138.
DOI |
25 | 吉兴全, 赵国航, 叶平峰, 等. 基于QMD- HBiGRU的短期光伏功率预测方法[J/OL]. 高电压技术: 1–18 (2023-08-04)[2024-05-21]. https://doi.org/10.13336/j.1003-6520.hve.20230333. |
JI Xingquan, ZHAO Guohang, YE Pingfeng, et al. Short-term PV forecasting method based on QMD-HBiGRU model[J/OL]. High Voltage Engineering: 1–18 (2023-08-04) [2024-05-21]. https://doi.org/10.13336/j.1003-6520.hve.20230333. | |
26 |
LI Z M, XU Y, WANG P, et al. Coordinated preparation and recovery of a post-disaster multi-energy distribution system considering thermal inertia and diverse uncertainties[J]. Applied Energy, 2023, 336, 120736.
DOI |
27 | 丁琦欣, 覃洪培, 万灿, 等. 基于机会约束规划的配电网分布式光伏承载能力评估[J]. 东北电力大学学报, 2022, 42 (6): 28- 38. |
DING Qixin, QIN Hongpei, WAN Can, et al. Chance-constrained optimization-based distributed photovoltaic hosting capacity assessment of distribution networks[J]. Journal of Northeast Electric Power University, 2022, 42 (6): 28- 38. | |
28 |
AHMED R, SREERAM V, MISHRA Y, et al. A review and evaluation of the state-of-the-art in PV solar power forecasting: techniques and optimization[J]. Renewable and Sustainable Energy Reviews, 2020, 124, 109792.
DOI |
29 | 徐非非, 冯华, 覃洪培, 等. 计及不确定性的配电网分布式光伏承载能力区间分析方法[J]. 浙江电力, 2023, 42 (11): 86- 95. |
XU Feifei, FENG Hua, QIN Hongpei, et al. An analysis method of DPV hosting capacity interval in distribution networks under uncertainties[J]. Zhejiang Electric Power, 2023, 42 (11): 86- 95. | |
30 | 江叶峰, 周海强, 罗建裕, 等. 计及源荷区间不确定性的电力系统日前优化调度[J]. 电力工程技术, 2022, 41 (4): 58- 66. |
JIANG Yefeng, ZHOU Haiqiang, LUO Jianyu, et al. Day-ahead optimal dispatch of power system considering source and load interval uncertainties[J]. Electric Power Engineering Technology, 2022, 41 (4): 58- 66. | |
31 |
MOON J, PARK J, HWANG E, et al. Forecasting power consumption for higher educational institutions based on machine learning[J]. The Journal of Supercomputing, 2018, 74 (8): 3778- 3800.
DOI |
32 |
JIA Y H, KWONG S, WU W H, et al. Sparse Bayesian learning-based kernel Poisson regression[J]. IEEE Transactions on Cybernetics, 2019, 49 (1): 56- 68.
DOI |
33 | 林少伯, 韩民晓, 赵国鹏, 等. 基于随机预测误差的分布式光伏配网储能系统容量配置方法[J]. 中国电机工程学报, 2013, 33 (4): 25- 33, 5. |
LIN Shaobo, HAN Minxiao, ZHAO Guopeng, et al. Capacity allocation of energy storage in distributed photovoltaic power system based on stochastic prediction error[J]. Proceedings of the CSEE, 2013, 33 (4): 25- 33, 5. | |
34 |
LORENZ E, HURKA J, HEINEMANN D, et al. Irradiance forecasting for the power prediction of grid-connected photovoltaic systems[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2009, 2 (1): 2- 10.
DOI |
35 | 丁明, 楚明娟, 潘浩, 等. 交直流混合微电网运行优化建模与不确定性分析[J]. 电力系统自动化, 2017, 41 (5): 1- 7, 45. |
DING Ming, CHU Mingjuan, PAN Hao, et al. Operation optimization modeling and uncertainty analysis for hybrid AC/DC microgrids[J]. Automation of Electric Power Systems, 2017, 41 (5): 1- 7, 45. | |
36 |
KAZARLIS S A, BAKIRTZIS A G, PETRIDIS V. A genetic algorithm solution to the unit commitment problem[J]. IEEE Transactions on Power Systems, 1996, 11 (1): 83- 92.
DOI |
37 | KUMAR N, PANIGRAHI B K, SINGH B. A solution to the ramp rate and prohibited operating zone constrained unit commitment by GHS-JGT evolutionary algorithm[J]. International Journal of Electrical Power & Energy Systems, 2016, 81, 193- 203. |
38 | 杨甲甲, 刘国龙, 赵俊华, 等. 采用长短期记忆深度学习模型的工业负荷短期预测方法[J]. 电力建设, 2018, 39 (10): 20- 27. |
YANG Jiajia, LIU Guolong, ZHAO Junhua, et al. A long short term memory based deep learning method for industrial load forecasting[J]. Electric Power Construction, 2018, 39 (10): 20- 27. | |
39 | 金娜, 刘文颖, 曹银利, 等. 大容量机组一次调频参数对电网频率特性的影响[J]. 电力系统保护与控制, 2012, 40 (1): 91- 95, 100. |
JIN Na, LIU Wenying, CAO Yinli, et al. Influence on the grid frequency characteristic by the parameters of primary frequency modulation of large capacity generator units[J]. Power System Protection and Control, 2012, 40 (1): 91- 95, 100. | |
40 | 王琦, 郭钰锋, 万杰, 等. 适用于高风电渗透率电力系统的火电机组一次调频策略[J]. 中国电机工程学报, 2018, 38 (4): 974- 984, 1274. |
WANG Qi, GUO Yufeng, WAN Jie, et al. Primary frequency regulation strategy of thermal units for a power system with high penetration wind power[J]. Proceedings of the CSEE, 2018, 38 (4): 974- 984, 1274. | |
41 | 何仰赞, 温增银 编. 电力系统分析-下[M]. 4版. 武汉: 华中科技大学出版社, 2016. |
[1] | 张宁宇, 周前, 刘建坤. 江苏海上、沿海和内陆风电出力及波动特性分析[J]. 中国电力, 2020, 53(7): 18-23. |
[2] | 杨茂, 江博. 风电功率弃风数据特征识别方法研究[J]. 中国电力, 2017, 50(5): 95-100. |
[3] | 马晓博,陈敏,周辛男. 微电网概率性最优的储能容量研究[J]. 中国电力, 2015, 48(1): 131-136. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||