[1] 李敬如, 万志伟, 宋毅, 等. 国外新型储能政策研究及对中国储能发展的启示[J]. 中国电力, 2022, 55(11): 1–9 LI Jingru, WAN Zhiwei, SONG Yi, et al. Research on new type energy storage policies of overseas countries and inspirations to energy storage development in China[J]. Electric Power, 2022, 55(11): 1–9 [2] 张黎明, 李浩, 吴亚雄, 等. 基于运行优化的含储能电力系统可靠性评估方法[J]. 中国电力, 2022, 55(9): 23–28 ZHANG Liming, LI Hao, WU Yaxiong, et al. A reliability evaluation method for power system with energy storage based on operation optimization[J]. Electric Power, 2022, 55(9): 23–28 [3] ZIEGLER M S, MUELLER J M, PEREIRA G D, et al. Storage requirements and costs of shaping renewable energy toward grid decarbonization[J]. Joule, 2019, 3(9): 2134–2153. [4] 国家发展改革委. 关于进一步完善分时电价机制的通知[EB/OL]. (2021-07-26)[2022-03-02]. https://www.ndrc.gov.cn/xxgk/zcfb/tz/202107/t20210729_1292067.html?code=&state=123. [5] 郭久亿, 刘洋, 郭焱林, 等. 不同典型用户侧储能配置评估与运行优化模型[J]. 电网技术, 2020, 44(11): 4245–4254 GUO Jiuyi, LIU Yang, GUO Yanlin, et al. Configuration evaluation and operation optimization model of energy storage in different typical user-side[J]. Power System Technology, 2020, 44(11): 4245–4254 [6] 薛金花, 叶季蕾, 许庆强, 等. 客户侧分布式储能消纳新能源的互动套餐和多元化商业模式研究[J]. 电网技术, 2020, 44(4): 1310–1316 XUE Jinhua, YE Jilei, XU Qingqiang, et al. Interactive package and diversified business mode of renewable energy accommodation with client distributed energy storage[J]. Power System Technology, 2020, 44(4): 1310–1316 [7] 蒋向兵, 汤波, 余光正, 等. 面向新能源就地消纳的园区储能与电价协调优化方法[J]. 电力系统自动化, 2022, 46(5): 51–64 JIANG Xiangbing, TANG Bo, YU Guangzheng, et al. Coordination and optimization method of park-level energy storage and electricity price for local accommodation of renewable energy[J]. Automation of Electric Power Systems, 2022, 46(5): 51–64 [8] 邓长虹, 张思捷, 杨威, 等. 基于智能模糊决策的光储系统实时调度技术[J]. 电网技术, 2018, 42(10): 3227–3233 DENG Changhong, ZHANG Sijie, YANG Wei, et al. Real-time scheduling technology of photovoltaic-battery generation system based on intelligent fuzzy logic control[J]. Power System Technology, 2018, 42(10): 3227–3233 [9] 陈亭轩, 徐潇源, 严正, 等. 基于深度强化学习的光储充电站储能系统优化运行[J]. 电力自动化设备, 2021, 41(10): 90–98 CHEN Tingxuan, XU Xiaoyuan, YAN Zheng, et al. Optimal operation based on deep reinforcement learning for energy storage system in photovoltaic-storage charging station[J]. Electric Power Automation Equipment, 2021, 41(10): 90–98 [10] CRESPO DEL GRANADO P, PANG Z, WALLACE S W. Synergy of smart grids and hybrid distributed generation on the value of energy storage[J]. Applied Energy, 2016, 170: 476–488. [11] 蔡紫婷, 彭敏放, 沈美娥. 考虑需求侧资源的智能小区综合能源日前优化调度[J]. 电力自动化设备, 2021, 41(3): 18–24,32 CAI Ziting, PENG Minfang, SHEN Meie. Day-ahead optimal scheduling of smart integrated energy communities considering demand-side resources[J]. Electric Power Automation Equipment, 2021, 41(3): 18–24,32 [12] ROLDÁN-BLAY C, ESCRIVÁ-ESCRIVÁ G, ROLDÁN-PORTA C. Improving the benefits of demand response participation in facilities with distributed energy resources[J]. Energy, 2019, 169: 710–718. [13] 陈启鑫, 房曦晨, 郭鸿业, 等. 储能参与电力市场机制: 现状与展望[J]. 电力系统自动化, 2021, 45(16): 14–28 CHEN Qixin, FANG Xichen, GUO Hongye, et al. Participation mechanism of energy storage in electricity market: status quo and prospect[J]. Automation of Electric Power Systems, 2021, 45(16): 14–28 [14] 宋航, 刘友波, 刘俊勇, 等. 考虑用户侧分布式储能交互的售电公司智能化动态定价[J]. 中国电机工程学报, 2020, 40(24): 7959–7972,8233 SONG Hang, LIU Youbo, LIU Junyong, et al. Intelligent dynamic pricing of electricity retailers considering distributed energy storage interaction on user side[J]. Proceedings of the CSEE, 2020, 40(24): 7959–7972,8233 [15] 王克道, 陈启鑫, 郭鸿业, 等. 面向可交易能源的储能容量合约机制设计与交易策略[J]. 电力系统自动化, 2018, 42(14): 54–60,90 WANG Kedao, CHEN Qixin, GUO Hongye, et al. Mechanism design and trading strategy for capacity contract of energy storage towards transactive energy[J]. Automation of Electric Power Systems, 2018, 42(14): 54–60,90 [16] 马腾飞, 裴玮, 肖浩, 等. 基于纳什谈判理论的风–光–氢多主体能源系统合作运行方法[J]. 中国电机工程学报, 2021, 41(1): 25–39,395 MA Tengfei, PEI Wei, XIAO Hao, et al. Cooperative operation method for wind-solar-hydrogen multi-agent energy system based on Nash bargaining theory[J]. Proceedings of the CSEE, 2021, 41(1): 25–39,395 [17] 吴鸣, 寇凌峰, 张进, 等. 多运营主体微电网日前经济优化调度纳什议价方法[J]. 中国电力, 2019, 52(11): 19–27,117 WU Ming, KOU Lingfeng, ZHANG Jin, et al. A day-ahead Nash bargaining method for economic dispatch of the multi-operator micro-grid[J]. Electric Power, 2019, 52(11): 19–27,117 [18] 顾洁, 白凯峰, 时亚军. 基于多主体主从博弈优化交互机制的区域综合能源系统优化运行[J]. 电网技术, 2019, 43(9): 3119–3134 GU Jie, BAI Kaifeng, SHI Yajun. Optimized operation of regional integrated energy system based on multi-agent master-slave game optimization interaction mechanism[J]. Power System Technology, 2019, 43(9): 3119–3134 [19] LIU N, CHENG M Y, YU X H, et al. Energy-sharing provider for PV prosumer clusters: a hybrid approach using stochastic programming and stackelberg game[J]. IEEE Transactions on Industrial Electronics, 2018, 65(8): 6740–6750. [20] 帅轩越, 马志程, 王秀丽, 等. 基于主从博弈理论的共享储能与综合能源微网优化运行研究[J/OL]. 电网技术: 1–12[2022-05-30]. DOI: 10.13335/j. 1000-3673. pst. 2021.2191. SHUAI Xuanyue, MA Zhicheng, WANG Xiuli, et al. Research on optimal operation of shared energy storage and integrated energy microgrid based on leader-follower game theory [J]. Power System Technology: 1–12[2022-05-30]. DOI:10.13335/j.1000-3673.pst.2021.2191. [21] 王帅, 帅轩越, 王智冬, 等. 基于纳什议价方法的虚拟电厂分布式多运营主体电能交易机制[J]. 电力建设, 2022, 43(3): 141–148 WANG Shuai, SHUAI Xuanyue, WANG Zhidong, et al. Distributed electricity trading mechanism of multi-operator virtual power plant based on Nash bargaining method[J]. Electric Power Construction, 2022, 43(3): 141–148 [22] 白斌, 韩明亮, 林江, 等. 含风电和光伏的可再生能源场景削减方法[J]. 电力系统保护与控制, 2021, 49(15): 141–149 BAI Bin, HAN Mingliang, LIN Jiang, et al. Scenario reduction method of renewable energy including wind power and photovoltaic[J]. Power System Protection and Control, 2021, 49(15): 141–149 [23] 钟雅珊, 付聪, 钱峰, 等. 考虑广义储能和条件风险价值的综合能源系统经济调度[J]. 电力系统保护与控制, 2022, 50(9): 54–63 ZHONG Yashan, FU Cong, QIAN Feng, et al. Economic dispatch model of an integrated energy system considering generalized energy storage and conditional value at risk[J]. Power System Protection and Control, 2022, 50(9): 54–63 [24] FAN S L, AI Q, PIAO L J. Bargaining-based cooperative energy trading for distribution company and demand response[J]. Applied Energy, 2018, 226: 469–482. [25] 芮涛. 基于博弈论的配电侧多微电网系统优化运行方法研究[D]. 合肥: 安徽大学, 2019. RUI Tao. Research on optimal operation method of distribution side multi-micro grid system based on game theory[D]. Hefei: Anhui University, 2019. [26] 马丽, 刘念, 张建华, 等. 基于主从博弈策略的社区能源互联网分布式能量管理[J]. 电网技术, 2016, 40(12): 3655–3662 MA Li, LIU Nian, ZHANG Jianhua, et al. Distributed energy management of community energy Internet based on leader-followers game[J]. Power System Technology, 2016, 40(12): 3655–3662
|