中国电力 ›› 2024, Vol. 57 ›› Issue (1): 91-100.DOI: 10.11930/j.issn.1004-9649.202307006

• 虚拟电厂构建与运营 • 上一篇    下一篇

基于改进深度Q网络的虚拟电厂实时优化调度

张超1,2(), 赵冬梅1(), 季宇2(), 张颖2()   

  1. 1. 华北电力大学 电气与电子工程学院,北京 102206
    2. 国网上海能源互联网研究院有限公司,上海 200120
  • 收稿日期:2023-07-03 接受日期:2023-11-07 出版日期:2024-01-28 发布日期:2024-01-23
  • 作者简介:张超(1998—),男,硕士研究生,从事虚拟电厂优化调度等研究,E-mail:120212201477@ncepu.edu.cn
    赵冬梅 ( 1965—) ,女,教授,博士生导师,从事电力系统分析与控制、新能源发电与智能电网等研究,E-mail:zhao-dm@ncepu.edu.cn
    季 宇(1982—),男,博士,高级工程师(教授级),从事分布式电源微电网及虚拟电厂技术研究,E-mail:jiyu@epri.sgcc.com.cn
    张 颖(1994—),女,硕士,工程师,从事分布式电源优化调度及虚拟电厂技术研究,E-mail:zhangying@epri.sgcc.com.cn
  • 基金资助:
    国家重点研发计划资助项目(规模化灵活资源虚拟电厂聚合互动调控关键技术,2021YFB2401200)。

Real Time Optimal Dispatch of Virtual Power Plant Based on Improved Deep Q Network

Chao ZHANG1,2(), Dongmei ZHAO1(), Yu JI2(), Ying ZHANG2()   

  1. 1. School of Electrical and Electronic Engineering, North China Electric Power University, Beijing 102206, China
    2. State Grid Shanghai Energy Internet Research Institute Co., Ltd., Shanghai 200120, China
  • Received:2023-07-03 Accepted:2023-11-07 Online:2024-01-28 Published:2024-01-23
  • Supported by:
    This work is supported by the National Key R&D Program of China (Aggregation Interaction Regulation Key Technologies of Virtual Power Plant with Enormous Flexible Distributed Energy Resources, No.2021YFB2401200).

摘要:

深度强化学习算法以数据为驱动,且不依赖具体模型,能有效应对虚拟电厂运营中的复杂性问题。然而,现有算法难以严格执行操作约束,在实际系统中的应用受到限制。为了克服这一问题,提出了一种基于深度强化学习的改进深度Q网络(improved deep Q-network,MDQN)算法。该算法将深度神经网络表达为混合整数规划公式,以确保在动作空间内严格执行所有操作约束,从而保证了所制定的调度在实际运行中的可行性。此外,还进行了敏感性分析,以灵活地调整超参数,为算法的优化提供了更大的灵活性。最后,通过对比实验验证了MDQN算法的优越性能。该算法为应对虚拟电厂运营中的复杂性问题提供了一种有效的解决方案。

关键词: 虚拟电厂, 实时优化, 深度强化学习, 云边协同, 优化调度

Abstract:

The deep reinforcement learning algorithm is data-driven and does not rely on specific models, which can effectively address the complexity issues in virtual power plant (VPP) operation. However, existing algorithms are difficult to strictly enforce operational constraints, which limits their application in practical systems. To overcome this problem, an improved deep Q-network (MDQN) algorithm based on deep reinforcement learning is proposed. This algorithm expresses deep neural networks as mixed integer programming formulas to ensure strict execution of all operational constraints within the action space, thus ensuring the feasibility of the formulated scheduling in actual operation. In addition, sensitivity analysis is conducted to flexibly adjust hyperparameters, providing greater flexibility for algorithm optimization. Finally, the superior performance of the MDQN algorithm is verified through comparative experiments. An effective solution is provided to address the complexity issues in the operation of VPP.

Key words: virtual power plant, real time optimization, deep reinforcement learning, cloud edge collaboration, optimal dispatch