中国电力 ›› 2024, Vol. 57 ›› Issue (1): 40-50.DOI: 10.11930/j.issn.1004-9649.202308122

• 虚拟电厂构建与运营 • 上一篇    下一篇

基于信息差距决策理论的虚拟电厂报价策略

谢蒙飞1(), 马高权1(), 刘斌1(), 潘振宁2(), 商云峰3()   

  1. 1. 昆明电力交易中心有限责任公司,云南 昆明 650011
    2. 华南理工大学 电力学院,广东 广州 510641
    3. 国家电投山东能源发展有限公司鲁东分公司,山东 烟台 264000
  • 收稿日期:2023-08-29 接受日期:2023-12-14 出版日期:2024-01-28 发布日期:2024-01-23
  • 作者简介:谢蒙飞(1989—),男,博士,高级工程师,从事水库优化调度、电力市场化交易、电力电量平衡等研究,E-mail:xiemengfeihust@foxmail.com
    马高权(1984—),男,硕士,高级工程师,从事电力市场交易、电力系统运行等研究,E-mail:magaoq@163.com
    刘斌(1995—),男,硕士,助理工程师,从事电力市场、电力调度、电力营销等研究,E-mail:lbnculab@qq.com
    潘振宁(1984—),男,通信作者,博士,助理研究员,从事电力系统优化运行与控制等研究,E-mail:scutpanzn@163.com
    商云峰(1986—),男,高级技师,从事新能源发电系统、风力发电、光伏发电、储能电站设备原理及控制等研究,E-mail:626386690@qq.com
  • 基金资助:
    国家自然科学基金资助项目(电力系统智能调度的高泛化性策略模型与元强化学习方法研究,52207105)。

Virtual Power Plant Quotation Strategy Based on Information Gap Decision Theory

Mengfei XIE1(), Gaoquan MA1(), Bin LIU1(), Zhenning PAN2(), Yunfeng SHANG3()   

  1. 1. Kunming Electric Power Trading Center Co., Ltd., Kunming 650011, China
    2. School of Electric Power Engineering, South China University of Technology, Guangzhou 510641, China
    3. Shandong Branch of State Power Investment Shandong Energy Development Co., Ltd., Yantai 264000, China
  • Received:2023-08-29 Accepted:2023-12-14 Online:2024-01-28 Published:2024-01-23
  • Supported by:
    This work is supported by National Natural Science Foundation of China (Research on High Generalization Strategy Model and Meta Reinforcement Learning Method for Intelligent Dispatching of Power Systems, No.52207105).

摘要:

为进一步提升分布式能源的调节潜力,基于信息差距决策理论,将探讨虚拟电厂(virtual power plant,VPP)在参与需求响应(demand response,DR)策略时的竞价方式分为平衡型、保守型和进取型3种策略模型,并为每种策略设计鲁棒函数和机会函数,分别实现对不同类型决策的优化。同时,设置ε约束模型,考虑了碳排放和利润的权衡关系。采用IEEE 18节点系统作为仿真环境,验证了所提方法的优点和必要性。仿真结果表明,保守型VPP能够保证在未来价格落入最大鲁棒性区间时获得最小关键利润;进取型VPP能够从意外的价格波动中获益,并实现期望的利润。

关键词: 虚拟电厂, 信息差距决策理论, 鲁棒性, 机会函数

Abstract:

To further enhance the regulatory potential of distributed energy resource (DER), based on the information gap decision theory (IGDT), the bidding methods for virtual power plants (VPPs) participating in demand response (DR) strategies are divided into three strategy models: balanced, conservative and aggressive, and the robust and opportunity functions are designed for each strategy to optimize different types of decisions. Meanwhile, a ε-constraint model is set with consideration of the trade-off between carbon emissions and profits. The advantages and necessity of the proposed method were verified using an IEEE18 node system as the simulation environment. The simulation results show that the conservative VPP can ensure the minimum critical profit when the future price falls into the maximum robustness range; the progressive VPP can benefit from unexpected price fluctuations and achieve expected profits.

Key words: virtual power plant, information gap decision theory, robustness, opportunity function deposition