中国电力 ›› 2024, Vol. 57 ›› Issue (1): 148-157.DOI: 10.11930/j.issn.1004-9649.202307072
王大兴1(), 宁妍2(
), 汪敬培3(
), 徐洋4(
), 毕峻5, 周铭标6, 王鹏4(
)
收稿日期:
2023-07-19
出版日期:
2024-01-28
发布日期:
2024-01-23
作者简介:
王大兴(1984—),男,高级工程师,从事电网设备状态评价及运检技术研究,E-mail:wangdxsepri@163.com基金资助:
Daxing WANG1(), Yan Ning2(
), Jingpei WANG3(
), Yang XU4(
), Jun BI5, Mingbiao ZHOU6, Peng WANG4(
)
Received:
2023-07-19
Online:
2024-01-28
Published:
2024-01-23
Supported by:
摘要:
发展高比例可再生能源接入的微电网是构建新型电力系统,实现中国能源安全和低碳发展的重要手段。在分析微电网所接入系统的动态特征时,现有等值模型存在鲁棒性不强的问题,即等值模型虽然可以很好地复现真实系统在训练故障下的动态特征,但却无法准确反映系统在未知故障(非训练故障)下的真实响应。为此,首先采用k-means++对微电网的典型运行方式进行有效区分,以表征系统的随机性和时变性特征;其次,采用基于关键参数筛选的参数辨识方法,避免了参数辨识过程中的多解问题;然后,针对系统不同典型运行方式,利用卷积神经网络对等值模型参数进行泛化;最后,基于Fisher判别准则实现了等值模型参数的在线匹配,并在某实际微电网模型中验证了所提方法的有效性。
王大兴, 宁妍, 汪敬培, 徐洋, 毕峻, 周铭标, 王鹏. 构建新型电力系统背景下的微电网鲁棒简化建模[J]. 中国电力, 2024, 57(1): 148-157.
Daxing WANG, Yan Ning, Jingpei WANG, Yang XU, Jun BI, Mingbiao ZHOU, Peng WANG. Robust Simplified Modeling of Microgrid in the Context of Constructing New Power Systems[J]. Electric Power, 2024, 57(1): 148-157.
参数 | 灵敏度 | 参数 | 灵敏度 | 参数 | 灵敏度 | 参数 | 灵敏度 | |||||||
Xd | 0.1231 | Kq | 0.0010 | 0.4468 | 0.1342 | |||||||||
0.4201 | Tpc | 0.2034 | 0.2834 | 0.0934 | ||||||||||
0.1521 | T0 | 0.0236 | 0.0961 | H | 0.0128 | |||||||||
Xq | 0.7662 | Kd | 0.3741 | 0.0263 | D | 0.8341 | ||||||||
Kp | 0.6613 | 0.3127 | Tq | 0.002 | Kqc | 0.0026 | ||||||||
Tp | 0.4115 | Ts | 0.0357 | Kpc | 0.3701 | Tqc | 0.0001 | |||||||
Tr | 0.1096 | T1 | 0.6236 | T2 | 0.2413 | T3 | 0.2123 | |||||||
T4 | 0.1918 | Ka | 0.6621 | K | 0.7122 | Ta | 0.0490 | |||||||
Kc | 0.0062 |
表 1 同步发电机及电压源型变流器参数灵敏度值
Table 1 Sensitivities of synchronous machine and VSC parameters
参数 | 灵敏度 | 参数 | 灵敏度 | 参数 | 灵敏度 | 参数 | 灵敏度 | |||||||
Xd | 0.1231 | Kq | 0.0010 | 0.4468 | 0.1342 | |||||||||
0.4201 | Tpc | 0.2034 | 0.2834 | 0.0934 | ||||||||||
0.1521 | T0 | 0.0236 | 0.0961 | H | 0.0128 | |||||||||
Xq | 0.7662 | Kd | 0.3741 | 0.0263 | D | 0.8341 | ||||||||
Kp | 0.6613 | 0.3127 | Tq | 0.002 | Kqc | 0.0026 | ||||||||
Tp | 0.4115 | Ts | 0.0357 | Kpc | 0.3701 | Tqc | 0.0001 | |||||||
Tr | 0.1096 | T1 | 0.6236 | T2 | 0.2413 | T3 | 0.2123 | |||||||
T4 | 0.1918 | Ka | 0.6621 | K | 0.7122 | Ta | 0.0490 | |||||||
Kc | 0.0062 |
模型 | 参数 | |||||||
同步电机本体 | D | Xq | ||||||
励磁系统 | K | Ka | T1 | |||||
调速系统 | Kd | |||||||
电压源型变流器 | Kp | Tp | Kpc | |||||
负荷以及并联阻抗 | Peq | Qeq | Req | Xeq |
表 2 等值模型待辨识关键参数
Table 2 Identified key parameters of equivalent model
模型 | 参数 | |||||||
同步电机本体 | D | Xq | ||||||
励磁系统 | K | Ka | T1 | |||||
调速系统 | Kd | |||||||
电压源型变流器 | Kp | Tp | Kpc | |||||
负荷以及并联阻抗 | Peq | Qeq | Req | Xeq |
聚类 组别 | 特征数据集 个数 | 聚类 组别 | 特征数据集 个数 | 聚类 组别 | 特征数据集 个数 | |||||
1 | 362 | 4 | 57 | 7 | 64 | |||||
2 | 53 | 5 | 78 | |||||||
3 | 245 | 6 | 41 |
表 3 特征数据集聚类结果
Table 3 The clustering results of characteristic data set
聚类 组别 | 特征数据集 个数 | 聚类 组别 | 特征数据集 个数 | 聚类 组别 | 特征数据集 个数 | |||||
1 | 362 | 4 | 57 | 7 | 64 | |||||
2 | 53 | 5 | 78 | |||||||
3 | 245 | 6 | 41 |
1 | 周原冰, 杨方, 余潇潇, 等. 中国能源电力碳中和实现路径及实施关键问题[J]. 中国电力, 2022, 55 (5): 1- 11. |
ZHOU Yuanbing, YANG Fang, YU Xiaoxiao, et al. Realization pathways and key problems of carbon neutrality in China's energy and power system[J]. Electric Power, 2022, 55 (5): 1- 11. | |
2 | 张运洲, 张宁, 代红才, 等. 中国电力系统低碳发展分析模型构建与转型路径比较[J]. 中国电力, 2021, 54 (3): 1- 11. |
ZHANG Yunzhou, ZHANG Ning, DAI Hongcai, et al. Model construction and pathways of low-carbon transition of China's power system[J]. Electric Power, 2021, 54 (3): 1- 11. | |
3 |
KONTIS E O, PAPADOPOULOS T A, SYED M H, et al. Artificial-intelligence method for the derivation of generic aggregated dynamic equivalent models[J]. IEEE Transactions on Power Systems, 2019, 34 (4): 2947- 2956.
DOI |
4 |
XU Y H, GAO T C. Sub-synchronous frequency domain-equivalent modeling for wind farms based on rotor equivalent resistance characteristics[J]. Global Energy Interconnection, 2022, 5 (3): 293- 300.
DOI |
5 | 于飞, 董乐, 李梅航, 等. 基于等效短线路解耦法的风电场模型分割仿真研究[J]. 电力系统保护与控制, 2023, 51 (19): 164- 172. |
YU Fei, DONG Le, LI Meihang, et al. Model segmentation simulation of a wind farm based on an equivalent short-circuit decoupling method[J]. Power System Protection and Control, 2023, 51 (19): 164- 172. | |
6 | 查晓明, 张扬, 成燕, 等. 用于简化微电网结构的微分几何广义同调方法[J]. 电工技术学报, 2012, 27 (1): 24- 31. |
ZHA Xiaoming, ZHANG Yang, CHENG Yan, et al. New method of extended coherency for micro-grid based on homology in differential geometry[J]. Transactions of China Electrotechnical Society, 2012, 27 (1): 24- 31. | |
7 | HUA J C, AI Q, YAO Y. Dynamic equivalent of microgrid considering flexible components[J]. IET Generation, Transmission & Distribution, 2015, 9(13): 1688–1696. |
8 | FENG X, LUBOSNY Z, BIALEK J. Dynamic equivalencing of distribution network with high penetration of distributed generation[C]//Proceedings of the 41st International Universities Power Engineering Conference. Newcastle upon Tyne, UK. IEEE, 2007: 467–471. |
9 | FENG X, LUBOSNY Z, BIALEK J W. Identification based dynamic equivalencing[C]//2007 IEEE Lausanne Power Tech. Lausanne, Switzerland. IEEE, 2008: 267–272. |
10 | GOLPÎRA H, SEIFI H, HAGHIFAM M R. Dynamic equivalencing of an active distribution network for large-scale power system frequency stability studies[J]. IET Generation, Transmission & Distribution, 2015, 9 (15): 2245- 2254. |
11 | PAPADOPOULOS P N, PAPADOPOULOS T A, CROLLA P, et al. Black-box dynamic equivalent model for microgrids using measurement data[J]. IET Generation, Transmission & Distribution, 2014, 8 (5): 851- 861. |
12 |
ZAKER B, GHAREHPETIAN G B, KARRARI M. A novel measurement-based dynamic equivalent model of grid-connected microgrids[J]. IEEE Transactions on Industrial Informatics, 2019, 15 (4): 2032- 2043.
DOI |
13 |
MILANOVIĆ J V, MAT ZALI S. Validation of equivalent dynamic model of active distribution network cell[J]. IEEE Transactions on Power Systems, 2013, 28 (3): 2101- 2110.
DOI |
14 | CARI E P T, ALBERTO L F C, BRETAS N G. A new methodology for parameter estimation of synchronous generator from disturbance measurements[C]//2008 IEEE Power and Energy Society General Meeting-Conversion and Delivery of Electrical Energy in the 21st Century. Pittsburgh, PA, USA. IEEE, 2008: 1–7. |
15 | DENECKE J, ERLICH I. Dynamic equivalents of active distribution networks[C]//2017 IEEE Power & Energy Society General Meeting. Chicago, IL, USA. IEEE, 2018: 1–5. |
16 | DENECKE J, SCHEWAREGA F, ERLICH I. Identification of dynamic equivalents for active distribution networks[C]//2018 IEEE Power & Energy Society General Meeting (PESGM). Portland, OR, USA. IEEE, 2018: 1–5. |
17 |
ZHENG C, WANG S R, LIU Y L, et al. A novel equivalent model of active distribution networks based on LSTM[J]. IEEE Transactions on Neural Networks and Learning Systems, 2019, 30 (9): 2611- 2624.
DOI |
18 | 中国电力科学研究院. 电力系统分析综合程序7.1版动态元件模型库用户手册[R]. 北京: 中国电力科学研究院, 2016. |
China Electric Power Research Institute. Dynamic element model library user's manual of power system analysis software package V7.1[R]. Beijing: China Electric Power Research Institute, 2016. | |
19 |
LIANG J, NG S K K, KENDALL G, et al. Load signature study—part I: basic concept, structure, and methodology[J]. IEEE Transactions on Power Delivery, 2010, 25 (2): 551- 560.
DOI |
20 | WANG F, FRANCO-PENYA H H, KELLEHER J D, et al. An analysis of the application of simplified silhouette to the evaluation of k-means clustering validity[C]//PERNER P. International Conference on Machine Learning and Data Mining in Pattern Recognition. Cham: Springer, 2017: 291–305. |
21 | 王鹏, 张真源, 黄琦, 等. 计及模型泛化能力的小水电机群动态等值方法研究[J]. 中国电机工程学报, 2018, 38 (14): 4138- 4147. |
WANG Peng, ZHANG Zhenyuan, HUANG Qi, et al. A dynamic equivalent method for small hydroelectric generation stack considering model generalization ability[J]. Proceedings of the CSEE, 2018, 38 (14): 4138- 4147. | |
22 | 谢会玲, 鞠平, 罗建裕, 等. 基于灵敏度计算的电力系统参数可辨识性分析[J]. 电力系统自动化, 2009, 33 (7): 17- 21. |
XIE Huiling, JU Ping, LUO Jianyu, et al. Identifiability analysis of load parameters based on sensitivity calculation[J]. Automation of Electric Power Systems, 2009, 33 (7): 17- 21. | |
23 | 曹丽华, 丁皓轩, 葛维春, 等. 基于遗传算法的热电机组储热罐最优运行策略[J]. 中国电机工程学报, 2020, 40 (11): 3574- 3582. |
CAO Lihua, DING Haoxuan, Ge Weichun, et al. Optimal operation strategy of heat storage tank in CHP unit based on genetic algorithm[J]. Proceedings of the CSEE, 2020, 40 (11): 3574- 3582. | |
24 | 田芳, 周孝信, 史东宇, 等. 基于卷积神经网络综合模型和稳态特征量的电力系统暂态稳定评估[J]. 中国电机工程学报, 2019, 39 (14): 4025- 4031. |
TIAN Fang, ZHOU Xiaoxin, SHI Dongyu, et al. Power system transient stability assessment based on comprehensive convolutional neural network model and steady-state features[J]. Proceedings of the CSEE, 2019, 39 (14): 4025- 4031. | |
25 | WANG P, ZHANG Z Y, HUANG Q, et al. Wind farm dynamic equivalent modeling method for power system probabilistic stability assessment[C]//2019 IEEE Industry Applications Society Annual Meeting. Baltimore, MD, USA. IEEE, 2019: 1–7. |
[1] | 闫志彬, 李立, 阳鹏, 宋蕙慧, 车彬, 靳盘龙. 考虑构网型储能支撑能力的微电网优化调度策略[J]. 中国电力, 2025, 58(2): 103-110. |
[2] | 陶磊, 罗萍萍, 林济铿. 基于深度学习的直流微电网虚假数据注入攻击二阶段检测方法[J]. 中国电力, 2024, 57(9): 11-19. |
[3] | 祝士焱, 许寅, 和敬涵, 王颖. 基于多微电网投影的配电系统协调恢复方法[J]. 中国电力, 2024, 57(9): 224-230. |
[4] | 么钟然, 孙丽颖. 考虑线路阻抗的分布式储能SOC均衡控制策略[J]. 中国电力, 2024, 57(9): 238-246. |
[5] | 吴军英, 路欣, 刘宏, 张彬, 柴守亮, 刘蕴春, 王佳楠. 基于Spearman-GCN-GRU模型的超短期多区域电力负荷预测[J]. 中国电力, 2024, 57(6): 131-140. |
[6] | 谭玲玲, 汤伟, 楚冬青, 于子涵, 吉兴全, 张玉敏. 考虑电-氢一体化的微电网低碳-经济协同优化调度[J]. 中国电力, 2024, 57(5): 137-148. |
[7] | 娄奇鹤, 李荣盛, 谭捷, 袁铁江. 基于卷积神经网络的暂稳极限功率计算[J]. 中国电力, 2024, 57(4): 211-219. |
[8] | 谭虎, 王小亮, 徐亭亭, 赵珂, 宿连超, 张文玉, 辛征. 风光沼储交直流混合农村微电网经济技术优化[J]. 中国电力, 2024, 57(3): 27-33. |
[9] | 李一鸣, 何奇, 王海亮, 钟浩, 马辉, 黄悦华. 基于分层事件触发的混合微电网集中控制策略[J]. 中国电力, 2024, 57(3): 73-82. |
[10] | 张冲标, 钱辰雯, 俞红燕, 彭燕玲, 陈金威. 基于ADMM的多场景县域多微电网交互运行策略[J]. 中国电力, 2024, 57(2): 9-18. |
[11] | 易文飞, 朱卫平, 郑明忠. 计及数据中心和风电不确定性的微电网经济调度[J]. 中国电力, 2024, 57(2): 19-26. |
[12] | 陈苏豪, 吴越, 曾伟, 杨晓辉, 王晓鹏, 伍云飞. 基于NNC法和DMC算法的CCHP型微电网两阶段调度[J]. 中国电力, 2024, 57(2): 171-182. |
[13] | 黄堃, 付明, 梁加本. 基于融合专家知识DDPG的孤岛微电网频率调节策略[J]. 中国电力, 2024, 57(2): 194-201. |
[14] | 李世龙, 李龙江, 刘欣博, 张华. 一种增强稳定性的储能变流器线性自抗扰控制参数整定方法[J]. 中国电力, 2024, 57(10): 25-35. |
[15] | 王锐, 赵学深, 张新慧, 彭克, 许洪璐, 孙浩玥. 基于虚拟惯性参数可行域的直流微电网高频振荡抑制[J]. 中国电力, 2024, 57(10): 123-132. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||