[1] 仝卫国, 苑津莎, 李宝树. 图像处理技术在直升机巡检输电线路中的应用综述[J]. 电网技术, 2010, 34(12): 204-208 TONG Weiguo, YUAN Jinsha, LI Baoshu. Application of image processing in patrol inspection of overhead transmission line by helicopter[J]. Power System Technology, 2010, 34(12): 204-208 [2] 李道明. 可配置变电站室内图像巡检系统及关键算法研究[D]. 杭州: 浙江大学, 2019. Li Daoming, Research on configurable image processing system for interior substation inspection and the key algorithms[D]. Hangzhou: Zhejiang University, 2019. [3] 魏立明, 杨天野. 基于图像增强和边缘检测的电力设备故障诊断研究[J]. 吉林建筑工程学院学报, 2012, 29(4): 84-86 WEI Liming, YANG Tianye. Research on fault diagnosis of electrical equipment based on image enhancement and edge detection[J]. Journal of Jilin Institute of Architecture & Civil Engineering, 2012, 29(4): 84-86 [4] 孙宁宁, 张建国. 超分辨率重建技术在电力监控系统中的应用[C]//2011年中国电机工程学会年会, 2011. SUN Ningning, ZHANG Jianguo. Power monitoring system based on super-resolution reconstruction[C]//2011 Annual Meeting of Chinese Society of Electrical Engineering, 2011. [5] 赵雨田, 都洪基. 电力线数字灰度图像增强算法[J]. 计算机系统应用, 2017, 26(2): 104-111 ZHAO Yutian, DU Hongji. Gray image enhancement algorithm of power line[J]. Computer Systems & Applications, 2017, 26(2): 104-111 [6] 薛璐妍, 王红. CLAHE融合小波去噪的电力图像增强算法[J]. 数据通信, 2018(6): 31-33 XUE Luyan, WANG Hong. The algorithm for electric equipment image enhancement based on CLAHE fusion wavelet denoising[J]. Data Communications, 2018(6): 31-33 [7] 林国强, 王博, 孔英会, 等. 基于压缩感知的变电站巡检图像超分辨率重建[C]//第37届中国控制会议论文集. 武汉, 2018: 337-341. [8] 陈智雨, 巩少岩, 俞学豪, 等. 基于自学习超分辨率的电力线路巡检可视化[J]. 电力信息与通信技术, 2019, 17(9): 11-16 CHEN Zhiyu, GONG Shaoyan, YU Xuehao, et al. Super-resolution visual patrol inspection for power line based on self-learning[J]. Electric Power Information and Communication Technology, 2019, 17(9): 11-16 [9] 王社军, 钱瑞琦, 韩周迎, 等. 浅谈基于图像增强智能变电站表盘识别方法[J]. 中国设备工程, 2019(10): 167-169 [10] 严利雄, 刘晓华, 李茗, 等. 基于生成对抗网络的红外图像电力设备超分辨算法研究[J]. 通信电源技术, 2020, 37(3): 40-43 YAN Lixiong, LIU Xiaohua, LI Ming, et al. Research on infrared images super-resolution algorithm on power equipment based on generative adversarial network[J]. Telecom Power Technology, 2020, 37(3): 40-43 [11] KRIZHEVSKY A, SUTSKEVER I, HINTON G. ImageNet classification with deep convolutional neural networks[J]. Advances in Neural Information Processing Systems, 2012: 1097-1105. [12] 李文璞, 谢可, 廖逍, 等. 基于Faster RCNN变电设备红外图像缺陷识别方法[J]. 南方电网技术, 2019, 13(12): 79-84 LI Wenpu, XIE Ke, LIAO Xiao, et al. Intelligent diagnosis method of infrared image for transformer equipment based on improved faster RCNN[J]. Southern Power System Technology, 2019, 13(12): 79-84 [13] LIU B L, AIT-BOUDAOUD D. Effective image super resolution via hierarchical convolutional neural network[J]. Neurocomputing, 2020, 374: 109-116. [14] XIE Saining, TU Zhuowen, Holistically-nested edge detection[J]. International Journal of Computer Vision, 2017, 125: 3-8. [15] LIM Bee, SON Sanghyun, KIM Heewon, et al. Enhanced deep residual networks for single image super-resolution[C]//IEEE Computer Vision and Pattern Recognition Workshops (CVPRW), 2017. [16] LI Zhen, YANG Jinglei, LIU Zheng, et al. Feedback network for image super-resolution[C]//IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2019. [17] DONG Chao, CHEN Change Loy, HE Kaiming, et al. Image super-resolution using deep convolutional networks[J]. TPAMI, 2016. [18] PELEG T, ELAD M. A statistical prediction model based on sparse representations for single image super-resolution[J]. IEEE Transactions on Image Processing, 2014, 23(6): 2569-2582. [19] WANG Z, BOVIK A C, SHEIKH H R, et al. Image quality assessment: from error visibility to structural similarity[J]. IEEE Transactions on Image Processing, 2004, 13(4): 600-612. [20] REN Shaoqing, HE Kaiming, GIRSHICK R, et. al. Faster R-CNN: towards real-time object detection with region proposal networks[C]//Neural Information Processing Systems (NIPS), 2015. |