中国电力 ›› 2021, Vol. 54 ›› Issue (5): 179-185.DOI: 10.11930/j.issn.1004-9649.202004144

• 信息与通信 • 上一篇    下一篇

基于E-FCNN的电力巡检图像增强

白万荣1, 张驯1, 朱小琴1, 刘吉祥1, 程其玉2, 赵琰2, 邵洁2   

  1. 1. 国网甘肃省电力公司电力科学研究院,甘肃 兰州 730050;
    2. 上海电力大学 电子与信息工程学院, 上海 200090
  • 收稿日期:2020-04-17 修回日期:2020-12-16 发布日期:2021-05-05
  • 作者简介:白万荣(1985-),男,硕士,高级工程师,从事电力网络与信息安全研究,E-mail:baiwanrong@yeah.net;邵洁(1981-),女,通信作者,副教授,从事电力系统智能化处理、机器视觉分析研究,E-mail:shaojie@shiep.edu.cn
  • 基金资助:
    国家自然科学基金资助项目(基于显著特征和数据压缩的图像摘要关键技术研究,F020603)

E-FCNN Based Electric Power Inspection Image Enhancement

BAI Wanrong1, ZHANG Xun1, ZHU Xiaoqin1, LIU Jixiang1, CHENG Qiyu2, ZHAO Yan2, SHAO Jie2   

  1. 1. Gansu Electric Power Research Institute, Lanzhou 730050, China;
    2. Department of Electronic and Information Engineering, Shanghai University of Electric Power, Shanghai 200090, China
  • Received:2020-04-17 Revised:2020-12-16 Published:2021-05-05
  • Supported by:
    This work is supported by National Natural Science Foundation of China (Study of Key Techniques of Image Hashing Based on Salient Feature and Data Compression, No.F020603)

摘要: 为了解决无人机巡线、无人值守变电站机器人巡检中,由于距离过远或机器抖动造成的采集图像待检目标分辨率低、图像模糊等问题,提出一种边缘感知反馈卷积神经网络E-FCNN。该网络在传统超分辨率网络基础上增加了残差模块和反馈机制,实现细节特征的提取和强化,并通过边缘感知分支补充纹理信息,提升了图像的细节描述。通过测试集实验结果表明:提出的边缘感知反馈卷积神经网络无论在主观视觉质量,或是峰值信噪比等客观评价指标上,都明显优于其他相关算法。且在基于无人机巡检的绝缘子检测应用中能够有效提高绝缘子检测率。

关键词: 电力巡检, 超分辨率, 图像增强, 卷积神经网络, 边缘感知

Abstract: For UAV patrol of transmission lines and robot inspection of unattended substations, low image resolution is one of the main problems due to long shooting distance or machine shaking. In order to solve this problem, we propose an edge-aware feedback convolutional neural network (E-FCNN), which not only adds Resnet blocks and feedback mechanism to the conventional super-resolution network to strengthen the ability of feature extraction, but also adds texture information to the edge-aware branch to enhance the image detail. Extensive experiments show that the proposed algorithm is superior to other existing algorithms, both in subjective visual quality and objective evaluation indexes such as peak signal-to-noise ratio. Practically, the proposed algorithm can improve the accuracy of insulator detection in UAV transmission line inspection.

Key words: electric power inspection, super-resolution, image enhancement, convolutional neural network, edge aware