[1] 谭显东, 刘俊, 徐志成, 等. “双碳”目标下“十四五”电力供需形势[J]. 中国电力, 2021, 54(5): 1–6 TAN Xiandong, LIU Jun, XU Zhicheng, et al. Power supply and demand balance during the 14th five-year plan period under the goal of carbon emission peak and carbon neutrality[J]. Electric Power, 2021, 54(5): 1–6 [2] 国家能源局. 2022年下半年风电并网运行情况[EB/OL]. [2023-01-10]. http://www.nea.gov.cn/2022-08/19/c_1310653994.htm. [3] FAN L L, MIAO Z X, SHAH S, et al. Real-world 20-Hz IBR subsynchronous oscillations: signatures and mechanism analysis[J]. IEEE Transactions on Energy Conversion, 2022, 37(4): 2863–2873. [4] CHENG Y Z, FAN L L, ROSE J, et al. Real-world subsynchronous oscillation events in power grids with high penetrations of inverter-based resources[J]. IEEE Transactions on Power Systems, 2023, 38(1): 316–330. [5] 王一珺, 杜文娟, 王海风. 大规模风电汇集系统小干扰稳定性研究综述[J]. 电网技术, 2022, 46(5): 1934–1946 WANG Yijun, DU Wenjuan, WANG Haifeng. Review on small signal stability analysis of large-scale wind power collection system[J]. Power System Technology, 2022, 46(5): 1934–1946 [6] 谢小荣, 刘华坤, 贺静波, 等. 直驱风机风电场与交流电网相互作用引发次同步振荡的机理与特性分析[J]. 中国电机工程学报, 2016, 36(9): 2366–2372 XIE Xiaorong, LIU Huakun, HE Jingbo, et al. Mechanism and characteristics of subsynchronous oscillation caused by the interaction between full-converter wind turbines and AC systems[J]. Proceedings of the CSEE, 2016, 36(9): 2366–2372 [7] 李奇南, 夏勇军, 张晓林, 等. 渝鄂柔性直流输电系统中高频振荡影响因素及抑制策略[J]. 中国电力, 2022, 55(7): 11–21 LI Qinan, XIA Yongjun, ZHANG Xiaolin, et al. Medium-high frequency impedance modeling of MMC and system stability analysis considering voltage measurement characteristics[J]. Electric Power, 2022, 55(7): 11–21 [8] 苏勋文, 裴禹铭, 崔含晴, 等. 含串补输电和VSC-HVDC输电的风电场并网系统次同步振荡机理研究[J]. 电力科学与技术学报, 2021, 36(1): 160–168 SU Xunwen, PEI Yuming, CUI Hanqing, et al. Theory of subsynchronous oscillation for the wind farm connected system with the VSC-HVDC and RLC branch[J]. Journal of Electric Power Science and Technology, 2021, 36(1): 160–168 [9] LIU H K, XIE X R, HE J B, et al. Subsynchronous interaction between direct-drive PMSG based wind farms and weak AC networks[J]. IEEE Transactions on Power Systems, 2017, 32(6): 4708–4720. [10] 周长春, 徐政. 由直流输电引起的次同步振荡的阻尼特性分析[J]. 中国电机工程学报, 2003, 23(10): 6–10 ZHOU Changchun, XU Zheng. Damping analysis of subsynchronous oscillation caused by HVDC[J]. Proceedings of the CSEE, 2003, 23(10): 6–10 [11] 韦鑫. 传统直流送端系统与火电机组轴系扭振机理及特性研究[D]. 武汉: 华中科技大学, 2019. WEI Xin. Study of sub-synchronous torsional interaction with HVDC transmission system[D]. Wuhan: Huazhong University of Science and Technology, 2019. [12] 高本锋, 赵成勇, 肖湘宁, 等. 高压直流输电系统附加次同步振荡阻尼控制器的设计与实现[J]. 高电压技术, 2010, 36(2): 501–506 GAO Benfeng, ZHAO Chengyong, XIAO Xiangning, et al. Design and implementation of SSDC for HVDC[J]. High Voltage Engineering, 2010, 36(2): 501–506 [13] 刘斌, 呼斯乐, 王甲军, 等. 直驱风电场经LCC-HVDC外送系统阻抗建模及振荡机理分析[J]. 中国电机工程学报, 2021, 41(10): 3492–3504, 3674 LIU Bin, HU Sile, WANG Jiajun, et al. Impedance modeling and oscillation mechanism analysis of D-PMSG-based wind farms integration through LCC-HVDC system[J]. Proceedings of the CSEE, 2021, 41(10): 3492–3504, 3674 [14] 高本锋, 刘毅, 李蕴红, 等. 直驱风电场与LCC-HVDC次同步交互作用的扰动传递路径及阻尼特性分析[J]. 中国电机工程学报, 2021, 41(5): 1713–1729 GAO Benfeng, LIU Yi, LI Yunhong, et al. Analysis on disturbance transfer path and damping characteristics of sub-synchronous interaction between D-PMSG-based wind farm and LCC-HVDC[J]. Proceedings of the CSEE, 2021, 41(5): 1713–1729 [15] 高本锋, 崔意婵, 李蕴红, 等. D-PMSG经LCC-HVDC送出系统的次同步振荡特性分析[J]. 中国电机工程学报, 2022, 42(6): 2084–2096 GAO Benfeng, CUI Yichan, LI Yunhong, et al. Analysis of subsynchronous oscillation characteristics of D-PMSG integrated with LCC-HVDC system[J]. Proceedings of the CSEE, 2022, 42(6): 2084–2096 [16] 赵书强, 张学伟, 高本锋, 等. 风火打捆经直流送出的次同步振荡分析与抑制措施[J]. 电工电能新技术, 2017, 36(3): 41–50 ZHAO Shuqiang, ZHANG Xuewei, GAO Benfeng, et al. Analysis and countermeasure of sub-synchronous oscillation in wind-thermal bundling system sent out via HVDC transmission[J]. Advanced Technology of Electrical Engineering and Energy, 2017, 36(3): 41–50 [17] 张瑞雪. 风火打捆经直流送出系统的次同步振荡研究[D]. 北京: 华北电力大学, 2019. ZHANG Ruixue. Research on subsynchronous oscillation of the wind-thermal-bundled system connected to LCC-HVDC lines[D]. Beijing: North China Electric Power University, 2019. [18] 王俊茜, 贾祺, 刘侃, 等. 基于信号注入法的风火打捆经直流外送系统次同步扭振分析[J]. 电力系统保护与控制, 2021, 49(17): 109–120 WANG Junxi, JIA Qi, LIU Kan, et al. Analysis of sub-synchronous torsional mode of wind-thermal bundled system transmitted via HVDC based on a signal injection method[J]. Power System Protection and Control, 2021, 49(17): 109–120 [19] 贾祺. 风电场等值建模及并网系统的次同步振荡特性研究[D]. 吉林: 东北电力大学, 2021. JIA Qi. Equivalent modeling of wind farm and study on subsynchronous oscillation characteristics of grid-connected system[D]. Jilin: Northeast Electric Power University, 2021. [20] 程时杰, 曹一家, 江全元. 电力系统次同步振荡的理论与方法[M]. 北京: 科学出版社, 2009. [21] 张美清. 含高比例电力电子化装备的弱送端系统动态相互作用分析研究[D]. 武汉: 华中科技大学, 2018. ZHANG Meiqing. Analysis and research on dynamic interaction of weak transmission system with high proportion of power electronic equipment[D]. Wuhan: Huazhong University of Science and Technology, 2018. [22] CANAY I M. A novel approach to the torsional interaction and electrical damping of the synchronous machine part I: theory[J]. IEEE Transactions on Power Apparatus and Systems, 1982, PAS-101(10): 3630–3638. [23] First benchmark model for computer simulation of subsynchronous resonance[J]. IEEE Transactions on Power Apparatus and Systems, 1977, 96(5): 1565–1572. [24] SZECHTMAN M, WESS T, THIO C V. A benchmark model for HVDC system studies[C]//International Conference on AC and DC Power Transmission. London, UK. London: IET, 2002: 374–378.
|