中国电力 ›› 2024, Vol. 57 ›› Issue (10): 115-122.DOI: 10.11930/j.issn.1004-9649.202404142
收稿日期:
2024-04-30
出版日期:
2024-10-28
发布日期:
2024-10-25
作者简介:
胡英杰(1994—),男,通信作者,博士后,从事新能源发电及并网控制技术研究,E-mail:huyin9jie@163.com基金资助:
Yingjie HU(), Qiang LI(
), Qun LI(
)
Received:
2024-04-30
Online:
2024-10-28
Published:
2024-10-25
Supported by:
摘要:
随着电力系统可再生能源占比不断提高,系统的惯量水平逐步降低,通过配置储能使光伏发电提供惯量与一次调频支撑成为应对频率稳定性问题的有效手段。过小的频率支撑参数无法充分利用光储系统的调频能力,而过大的参数将导致暂态过程中储能或变流器功率越限,引发设备损坏风险。为此,提出了一种考虑容量限制的光储系统惯量与一次调频参数优化配置方法。首先,基于构网型光储系统的控制方程建立了频率偏差、频率死区、一次调频系数与变流器出力间的解析关系,从而推导出保证变流器和储能出力不越限的一次调频系数的可行边界。其次,以光储系统容量限制和其参与暂态频率支撑的动态方程为约束,建立了最大化频率最低点的光储系统频率支撑优化模型,以确定最佳的虚拟惯量系数。最后,仿真分析验证了该方法可在多种场景下充分利用光储系统的暂态频率支撑能力,并满足容量限制。
胡英杰, 李强, 李群. 考虑容量限制的构网型光储系统惯量与一次调频参数优化配置方法[J]. 中国电力, 2024, 57(10): 115-122.
Yingjie HU, Qiang LI, Qun LI. Co-Optimization of Inertia and Droop Control Coefficient for Grid-Forming Photovoltaic-Storage System Considering Capacity Limits[J]. Electric Power, 2024, 57(10): 115-122.
符号 | 含义 | 大小 | ||
SB/(MV·A) | 基准容量 | 1 | ||
fN/Hz | 额定频率 | 50 | ||
UN/kV | 交流系统额定电压 | 10 | ||
PL(p.u.) | 负荷有功功率 | 5 | ||
HG/s | 等值同步机惯量 | 120 | ||
RG/% | 同步机一次调差系数 | 0.4 | ||
FH | 发电机组原动机中高压缸做功所占比例 | 0.3 | ||
S/(MV·A) | 变流器容量 | 1.6 | ||
PESSM/MW | 储能单元容量 | 0.3 | ||
D | VSG阻尼系数 | 10 | ||
Δfmax/Hz | 允许的最大频率偏差 | 0.8 |
表 1 仿真系统主要参数
Table 1 Main Parameters of the Test System
符号 | 含义 | 大小 | ||
SB/(MV·A) | 基准容量 | 1 | ||
fN/Hz | 额定频率 | 50 | ||
UN/kV | 交流系统额定电压 | 10 | ||
PL(p.u.) | 负荷有功功率 | 5 | ||
HG/s | 等值同步机惯量 | 120 | ||
RG/% | 同步机一次调差系数 | 0.4 | ||
FH | 发电机组原动机中高压缸做功所占比例 | 0.3 | ||
S/(MV·A) | 变流器容量 | 1.6 | ||
PESSM/MW | 储能单元容量 | 0.3 | ||
D | VSG阻尼系数 | 10 | ||
Δfmax/Hz | 允许的最大频率偏差 | 0.8 |
算例 | 初始有功功率(p.u.) | 剩余有功容量(p.u.) | 最大一次调频系数 | |||
1 | 1.5 | 0.06 | 0.61 | |||
2 | 1.4 | 0.16 | 7.19 | |||
3 | 1.3 | 0.26 | 13.76 | |||
4 | 1.2 | 0.30 | 16.45 | |||
5 | 1.1 | 0.30 | 16.45 |
表 2 算例1—算例5的控制参数设置
Table 2 Control Parameter Settings for Case 1 to Case 5
算例 | 初始有功功率(p.u.) | 剩余有功容量(p.u.) | 最大一次调频系数 | |||
1 | 1.5 | 0.06 | 0.61 | |||
2 | 1.4 | 0.16 | 7.19 | |||
3 | 1.3 | 0.26 | 13.76 | |||
4 | 1.2 | 0.30 | 16.45 | |||
5 | 1.1 | 0.30 | 16.45 |
1 |
RATNAM K S, PALANISAMY K, YANG G Y. Future low-inertia power systems: Requirements, issues, and solutions - A review[J]. Renewable and Sustainable Energy Reviews, 2020, 124, 109773.
DOI |
2 | 谭显东, 刘俊, 徐志成, 等. “双碳” 目标下“十四五” 电力供需形势[J]. 中国电力, 2021, 54 (5): 1- 6. |
TAN Xiandong, LIU Jun, XU Zhicheng, et al. Power supply and demand balance during the 14th five-year plan period under the goal of carbon emission peak and carbon neutrality[J]. Electric Power, 2021, 54 (5): 1- 6. | |
3 | 国家能源局. 新型电力系统发展蓝皮书[M]. 北京: 中国电力出版社, 2023. |
4 | 汪梦军, 郭剑波, 马士聪, 等. 新能源电力系统暂态频率稳定分析与调频控制方法综述[J]. 中国电机工程学报, 2023, 43 (5): 1672- 1694. |
WANG Mengjun, GUO Jianbo, MA Shicong, et al. Review of transient frequency stability analysis and frequency regulation control methods for renewable power systems[J]. Proceedings of the CSEE, 2023, 43 (5): 1672- 1694. | |
5 | 胡安平, 杨波, 潘鹏鹏, 等. 基于电力电子接口的储能系统惯性特征研究[J]. 中国电机工程学报, 2018, 38 (17): 4999- 5008, 5297. |
HU Anping, YANG Bo, PAN Pengpeng, et al. Study on inertial characteristics of energy storage system with power electronic interface[J]. Proceedings of the CSEE, 2018, 38 (17): 4999- 5008, 5297. | |
6 | 刘勃, 陈中, 王毅, 等. 基于斜坡渐变扰动的新型电力系统等效惯量评估[J]. 电力自动化设备, 2024, 44 (3): 49- 56. |
LIU Bo, CHEN Zhong, WANG Yi, et al. Ramp gradient disturbance based equivalent inertia estimation of new type power system[J]. Electric Power Automation Equipment, 2024, 44 (3): 49- 56. | |
7 |
BANDYOPADHYAY S, PURGAT P, QIN Z A, et al. A multiactive bridge converter with inherently decoupled power flows[J]. IEEE Transactions on Power Electronics, 2021, 36 (2): 2231- 2245.
DOI |
8 | 谢小荣, 贺静波, 毛航银, 等. “双高” 电力系统稳定性的新问题及分类探讨[J]. 中国电机工程学报, 2021, 41 (2): 461- 475. |
XIE Xiaorong, HE Jingbo, MAO Hangyin, et al. New issues and classification of power system stability with high shares of renewables and power electronics[J]. Proceedings of the CSEE, 2021, 41 (2): 461- 475. | |
9 | 王博, 杨德友, 蔡国伟. 高比例新能源接入下电力系统惯量相关问题研究综述[J]. 电网技术, 2020, 44 (8): 2998- 3007. |
WANG Bo, YANG Deyou, CAI Guowei. Review of research on power system inertia related issues in the context of high penetration of renewable power generation[J]. Power System Technology, 2020, 44 (8): 2998- 3007. | |
10 |
方勇杰. 英国“8·9” 停电事故对频率稳定控制技术的启示[J]. 电力系统自动化, 2019, 43 (24): 1- 5.
DOI |
FANG Yongjie. Reflections on frequency stability control technology based on the blackout event of 9 August 2019 in UK[J]. Automation of Electric Power Systems, 2019, 43 (24): 1- 5.
DOI |
|
11 | 张武其, 文云峰, 迟方德, 等. 电力系统惯量评估研究框架与展望[J]. 中国电机工程学报, 2021, 41 (20): 6842- 6856. |
ZHANG Wuqi, WEN Yunfeng, CHI Fangde, et al. Research framework and prospect on power system inertia estimation[J]. Proceedings of the CSEE, 2021, 41 (20): 6842- 6856. | |
12 |
秦晓辉, 苏丽宁, 迟永宁, 等. 大电网中虚拟同步发电机惯量支撑与一次调频功能定位辨析[J]. 电力系统自动化, 2018, 42 (9): 36- 43.
DOI |
QIN Xiaohui, SU Lining, CHI Yongning, et al. Functional orientation discrimination of inertia support and primary frequency regulation of virtual synchronous generator in large power grid[J]. Automation of Electric Power Systems, 2018, 42 (9): 36- 43.
DOI |
|
13 | 孙华东, 王宝财, 李文锋, 等. 高比例电力电子电力系统频率响应的惯量体系研究[J]. 中国电机工程学报, 2020, 40 (16): 5179- 5192. |
SUN Huadong, WANG Baocai, LI Wenfeng, et al. Research on inertia system of frequency response for power system with high penetration electronics[J]. Proceedings of the CSEE, 2020, 40 (16): 5179- 5192. | |
14 | 詹长江, 吴恒, 王雄飞, 等. 构网型变流器稳定性研究综述[J]. 中国电机工程学报, 2023, 43 (6): 2339- 2359. |
ZHAN Changjiang, WU Heng, WANG Xiongfei, et al. An overview of stability studies of grid-forming voltage source converters[J]. Proceedings of the CSEE, 2023, 43 (6): 2339- 2359. | |
15 | 罗澍忻, 韩应生, 余浩, 等. 构网型控制在提升高比例新能源并网系统振荡稳定性中的应用[J]. 南方电网技术, 2023, 17 (5): 39- 48. |
LUO Shuxin, HAN Yingsheng, YU Hao, et al. Application of grid-forming control in improving the oscillation stability of power systems with high proportion renewable energy integration[J]. Southern Power System Technology, 2023, 17 (5): 39- 48. | |
16 | 王吉利, 占领, 张钢, 等. 提高构网型储能系统功角稳定性的附加阻尼方法[J]. 电力科学与技术学报, 2023, 38 (4): 75- 81, 103. |
WANG Jili, ZHAN Ling, ZHANG Gang, et al. Additional damping method for improving the power angle stability of grid-forming energy storage system[J]. Journal of Electric Power Science and Technology, 2023, 38 (4): 75- 81, 103. | |
17 | 杜夏恒, 赫玉莹, 邹文, 等. 跟网型和构网型逆变器的阻抗无源化方法综述[J]. 东北电力大学学报, 2024, 44 (2): 12- 20. |
DU Xiaheng, HE Yuying, ZOU Wen, et al. An overview of impedance passivation methods forGrid-following and grid-forming inverters[J]. Journal of Northeast Electric Power University, 2024, 44 (2): 12- 20. | |
18 |
李建林, 丁子洋, 刘海涛, 等. 构网型储能变流器及控制策略研究[J]. 发电技术, 2022, 43 (5): 679- 686.
DOI |
LI Jianlin, DING Ziyang, LIU Haitao, et al. Research on grid-forming energy storage converters and control strategies[J]. Power Generation Technology, 2022, 43 (5): 679- 686.
DOI |
|
19 | 范宸珲, 秦晓辉, 齐磊, 等. 构网型下垂控制中虚拟阻抗的作用、改进及研究前景分析[J/OL]. 电网技术: 1–17. |
2024-06-11). https: //doi. org/10.13335/j. 1000-3673. pst. 2024.0189. Fan Chenhui, Qin Xiaohui, Qi Lei, et al. Analysis of the Role, Improvement, and Research Prospects of Virtual Impedance in Grid-forming Droop Control[J/OL]. Power System Technology: 1–17. (2024-06-11). https://doi.org/10.13335/j.1000-3673.pst.2024.0189. | |
20 |
粟世玮, 胡钰焓, 王相, 等. 计及储能荷电状态约束的输配协同机组组合优化[J]. 智慧电力, 2023, 51 (11): 69- 75.
DOI |
SU Shiwei, HU Yuhan, WANG Xiang, et al. Unit commitment optimization of transmission and distribution coordination with state of charge constraint of energy storage[J]. Smart Power, 2023, 51 (11): 69- 75.
DOI |
|
21 | 任大伟, 侯金鸣, 肖晋宇, 等. 支撑双碳目标的新型储能发展潜力及路径研究[J]. 中国电力, 2023, 56 (8): 17- 25. |
REN Dawei, HOU Jinming, XIAO Jinyu, et al. Research on development potential and path of new energy storage supporting carbon peak and carbon neutrality[J]. Electric Power, 2023, 56 (8): 17- 25. | |
22 | 李鲁阳, 陈龙翔, 陈磊, 等. 用于新能源一次调频的储能经济配置研究[J/OL]. 中国电力, 2023: 1–12. (2023-11-20). https://kns.cnki.net/kcms/detail/11.3265.TM.20231117.1545.016.html. |
LI Luyang, CHEN Longxiang, CHEN Lei, et al. Research on economic configuration of energy storage for assisting new energy in primary frequency regulation[J/OL]. Electric Power, 2023: 1–12. (2023-11-20). https://kns.cnki.net/kcms/detail/11.3265.TM.20231117.1545.016.html. | |
23 |
OUDALOV A, CHARTOUNI D, OHLER C. Optimizing a battery energy storage system for primary frequency control[J]. IEEE Transactions on Power Systems, 2007, 22 (3): 1259- 1266.
DOI |
24 |
DELILLE G, FRANCOIS B, MALARANGE G. Dynamic frequency control support by energy storage to reduce the impact of wind and solar generation on isolated power system's inertia[J]. IEEE Transactions on Sustainable Energy, 2012, 3 (4): 931- 939.
DOI |
25 |
KNAP V, CHAUDHARY S K, STROE D I, et al. Sizing of an energy storage system for grid inertial response and primary frequency reserve[J]. IEEE Transactions on Power Systems, 2016, 31 (5): 3447- 3456.
DOI |
26 |
KE D P, CHUNG C Y, XU J, et al. Inertia emulation uncorrelated with electromechanical dynamics to improve frequency transients using center of inertia (COI) frequency signal[J]. IEEE Transactions on Power Systems, 2021, 36 (3): 1736- 1749.
DOI |
27 | 赵晶晶, 徐传琳, 吕雪, 等. 微电网一次调频备用容量与储能优化配置方法[J]. 中国电机工程学报, 2017, 37 (15): 4324- 4332, 4572. |
ZHAO Jingjing, XU Chuanlin, LÜ Xue, et al. Optimization of micro-grid primary frequency regulation reserve capacity and energy storage system[J]. Proceedings of the CSEE, 2017, 37 (15): 4324- 4332, 4572. | |
28 |
HERNÁNDEZ J C, BUENO P G, SANCHEZ-SUTIL F. Enhanced utility-scale photovoltaic units with frequency support functions and dynamic grid support for transmission systems[J]. IET Renewable Power Generation, 2017, 11 (3): 361- 372.
DOI |
29 | LIU Y, YIN Y W, SUN B, et al. Coordinated frequency regulation strategy of pumped storage units and battery energy storage system[C]//2021 IEEE Sustainable Power and Energy Conference (iSPEC). Nanjing, China. IEEE, 2021: 1195–1200. |
30 | 郭强, 陈崇德, 胡阳, 等. 飞轮和锂电池储能联合光伏发电一次调频控制[J]. 电力系统及其自动化学报, 2023, 35 (11): 1- 9. |
GUO Qiang, CHEN Chongde, HU Yang, et al. Flywheel and lithium battery energy storage combined with photovoltaic power generation participating in primary frequency regulation control[J]. Proceedings of the CSU-EPSA, 2023, 35 (11): 1- 9. | |
31 | 刘军, 朱世祥, 柳盼攀, 等. 考虑系统频率安全稳定约束的风储联合频率响应控制策略[J]. 电力系统保护与控制, 2024, 52 (1): 73- 84. |
LIU Jun, ZHU Shixiang, LIU Panpan, et al. Coordinated control strategy for wind turbine and energy storage equipment considering system frequency safety and stability constraints[J]. Power System Protection and Control, 2024, 52 (1): 73- 84. |
[1] | 田刚领, 武鸿鑫, 李娟, 张柳丽, 谢佳, 李爱魁. 风电场多功能储能电站功率分配策略[J]. 中国电力, 2024, 57(9): 247-256. |
[2] | 李鲁阳, 陈龙翔, 陈磊, 孙大卫, 吴林林, 闵勇. 用于新能源一次调频的储能经济配置研究[J]. 中国电力, 2024, 57(7): 54-65. |
[3] | 李建华, 曹路, 杨仁炘, 邓桢彦, 李征, 蔡旭. 华东沿海风电场群电网主动频率支撑策略[J]. 中国电力, 2023, 56(11): 49-58, 112. |
[4] | 刘海涛, 叶筱怡, 吕干云, 袁华骏, 耿宗璞. 基于BAS-SVM的配电网电压暂降源识别[J]. 中国电力, 2022, 55(5): 128-133. |
[5] | 张嘉诚, 夏向阳, 邓子豪, 陈贵全. 储能电站安全参与电网一次调频的优化控制策略[J]. 中国电力, 2022, 55(2): 19-27. |
[6] | 方日升, 林耀东, 江伟, 黄霆, 徐振华, 吴丹岳, 陈志, 苏毅, 林济铿. 调速侧电力系统稳定器优化设计方法[J]. 中国电力, 2021, 54(9): 74-82. |
[7] | 盛锴, 邹鑫, 邱靖, 朱晓星. 火电机组一次调频功率响应特性精细化建模[J]. 中国电力, 2021, 54(6): 111-118,152. |
[8] | 张林, 刘继春. 基于EEMD-SE和PSO-KELM的短期负荷区间预测方法[J]. 中国电力, 2021, 54(3): 132-140. |
[9] | 王天翔, 程雪坤, 李伟超, 郑金鑫. 基于变参数减载控制的风电场一次调频策略[J]. 中国电力, 2021, 54(12): 94-101. |
[10] | 于国强, 崔晓波, 史毅越, 汤可怡, 张天海. 基于改进群优化算法的深度调峰机组一次调频建模[J]. 中国电力, 2020, 53(6): 147-152. |
[11] | 宋崇明, 田雪沁, 徐彤, 王新雷. 配置蓄热装置对火电机组一次调频性能影响[J]. 中国电力, 2020, 53(2): 120-128. |
[12] | 张宝, 丁阳俊, 顾正皓, 应光耀, 樊印龙. 基于抑制电力系统低频振荡的火电机组控制方式优化[J]. 中国电力, 2020, 53(2): 137-141,149. |
[13] | 伦涛, 鄂志君, 张利, 王鑫, 赵永亮, 严俊杰. 燃煤机组不同灵活性调节方案参与一次调频过程的经济性分析[J]. 中国电力, 2019, 52(8): 164-172. |
[14] | 王珠, 韩翔, 许立环, 赵永亮, 种道彤. 一次调频参数对超超临界二次再热机组性能的影响[J]. 中国电力, 2019, 52(5): 54-62. |
[15] | 于明双, 张鹏, 王国成. 660 MW供热机组一次调频功能的完善及应用[J]. 中国电力, 2019, 52(4): 138-143. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||