[1] 胡泽春, 罗浩成. 大规模可再生能源接入背景下自动发电控制研究现状与展望[J]. 电力系统自动化, 2018, 42(8):2-15 HU Zechun, LUO Haocheng. Research status and prospect of automatic generation control with integration of large-scale renewable energy[J]. Automation of Electric Power Systems, 2018, 42(8):2-15 [2] 王彩霞, 李琼慧, 雷雪姣. 储能对大比例可再生能源接入电网的调频价值分析[J]. 中国电力, 2016, 49(10):148-152 WANG Caixia, LI Qionghui, LEI Xuejiao. Methodology for analyzing the value of energy storage to power system frequency control in context of high shares of renewable energy[J]. Electric Power, 2016, 49(10):148-152 [3] 薛禹胜, 雷兴, 薛峰, 等. 关于风电不确定性对电力系统影响的评述[J]. 中国电机工程学报, 2014, 34(29):5029-5040 XUE Yusheng, LEI Xing, XUE Feng, et al. A review on impacts of wind power uncertainties on power systems[J]. Proceedings of the CSEE, 2014, 34(29):5029-5040 [4] 荆平, 徐桂芝, 赵波, 等. 面向全球能源互联网的大容量储能技术[J]. 智能电网, 2015, 3(6):486-492 JING Ping, XU Guizhi, ZHAO Bo, et al. Large-scale energy storage technology for global energy internet[J]. Smart Grid, 2015, 3(6):486-492 [5] 张明霞, 闫涛, 来小康, 等. 电网新功能形态下储能技术的发展愿景和技术路径[J]. 电网技术, 2018, 42(5):1370-1377 ZHANG Mingxia, YAN Tao, LAI Xiaokang, et al. Technology vision and route of energy storage under new power grid function configuration[J]. Power System Technology, 2018, 42(5):1370-1377 [6] 国家统计局. 中华人民共和国2017年国民经济和社会发展统计公报[EB/OL]. (2018-02-28)[2018-08-20]. http://www.stats.gov.cn/tjsj/zxfb/201802/t20180228_1585631.html. [7] 苏鹏, 王文君, 杨光, 等. 提升火电机组灵活性改造技术方案研究[J]. 中国电力, 2018, 51(5):87-94 SU Peng, WANG Wenjun, YANG Guang, et al. Research on the technology to improve the flexibility of thermal power plants[J]. Electric Power, 2018, 51(5):87-94 [8] 国家能源局. 关于启动提升火电灵活性改造示范试点工作的通知[EB/OL]. (2016-07-04)[2018-08-23]. http://zfxxgk.nea.gov.cn/auto84/201607/t20160704_2272.htm. [9] 国家能源局. 关于启动第二批提升火电灵活性改造示范试点工作的通知[EB/OL]. (2016-08-05)[2018-08-15]. http://zfxxgk.nea.gov.cn/auto84/201608/t20160805_2285.htm?keywords=. [10] 国家发展和改革委员会. 电力发展"十三五"规划[EB/OL]. (2017-06-05)[2018-08-11]. http://www.ndrc.gov.cn/fzgggz/fzgh/ghwb/gjjgh/201706/t20170605_849994.html. [11] 国家能源局. 国家能源局关于印发《完善电力辅助服务补偿(市场)机制工作方案》的通知[EB/OL]. (2017-11-15)[2018-08-12]. http://zfxxgk.nea.gov.cn/auto92/201711/t20171122_3058.htm. [12] 南方能源监管局. 广东省发展改革委关于征求南方(以广东起步)电力现货市场系列规则意见的通知[EB/OL]. (2018-08-31)[2018-09-11]. http://nfj.nea.gov.cn/adminContent/initViewContent.do?pk=402881e56579be6301658d7123c2001a. [13] 朱爱军, 夏志, 王志敏, 等. 火电机组一次调频影响因素分析[J]. 吉林电力, 2018, 46(2):41-44 ZHU Aijun, XIA Zhi, WANG Zhimin, et al. Analysis of primary frequency compensation current situation for thermal power generating units[J]. Jilin Electric Power, 2018, 46(2):41-44 [14] 丁宁, 廖金龙, 陈波, 等. 大功率火电机组一次调频能力仿真与试验[J]. 热力发电, 2018, 47(6):85-90 DING Ning, LIAO Jinlong, CHEN Bo, et al. Primary frequency control ability of thermal power units with large capacity:simulation and experiment[J]. Thermal Power Generation, 2018, 47(6):85-90 [15] 吴欣, 吴宁, 孙海涛, 等. 火电机组一次调频性能提升实践[J]. 山东电力技术, 2018, 45(3):65-68 WU Xin, WU Ning, SUN Haitao, et al. Practice of improving the performance of primary frequency regulation of thermal power unit[J]. Shandong Electric Power, 2018, 45(3):65-68 [16] 杨宏斌. 300 MW火电机组协调控制系统优化[J]. 机电信息, 2018(21):18-19 [17] 牟春华, 兀鹏越, 孙钢虎, 等. 火电机组与储能系统联合自动发电控制调频技术及应用[J]. 热力发电, 2018, 47(5):29-34 MU Chunhua, WU Pengyue, SUN Ganghu, et al. AGC frequency modulation technology and application for combination of thermal power unit and energy storage system[J]. Thermal Power Generation, 2018, 47(5):29-34 [18] 裴哲义, 王新雷, 董存, 等. 东北供热机组对新能源消纳的影响分析及热电解耦措施[J]. 电网技术, 2017, 41(6):1786-1792 PEI Zheyi, WANG Xinlei, DONG Cun, et al. Analysis of impact of CHP plant on renewable energy accommodation in Northeast China and thermoelectric decoupling measures[J]. Power System Technology, 2017, 41(6):1786-1792 [19] 田立顺. 蓄热罐在热电联供集中供热系统的应用[J]. 煤气与热力, 2016, 36(11):21-24 TIAN Lishun. Application of thermal storage tank in centralized heat-supply system of heat and power cogeneration[J]. Gas & Heat, 2016, 36(11):21-24 [20] 吕泉, 陈天佑, 王海霞, 等. 配置储热后热电机组调峰能力分析[J]. 电力系统自动化, 2014, 38(11):34-41 LYU Quan, CHEN Tianyou, WANG Haixia, et al. Analysis on peak-load regulation ability of cogeneration unit with heat accumulator[J]. Automation of Electric Power Systems, 2014, 38(11):34-41 [21] 李建林, 谢志佳, 李德鑫, 等. 蓄热式电锅炉提升风电消纳能力关键技术研究[J]. 电器与能效管理技术, 2018(1):1-7 LI Jianlin, XIE Zhijia, LI Dexin, et al. Research on key technologies of electric boiler with thermal energy storage in facilitating wind power accommodation capability[J]. Electrical & Energy Management Technology, 2018(1):1-7 [22] 吕永兴. 火电机组一次调频功能的实现与优化[C]//中国循环流化床发电生产运营管理(2013). 2013:219-222. [23] 李浩. 关于一次调频函数斜率和转速不等率关系的探讨[J]. 中国仪器仪表, 2014(7):70-72 LI Hao. Discussing the relationship of the slope of primary frequency regulation function and speed governing droop[J]. China Instrumentation, 2014(7):70-72 [24] 徐彤, 宋崇明, 谢春甫, 等. 燃煤汽轮机发电机组背压变化的一次调频能力补偿[J]. 节能技术, 2017, 35(6):542-545, 568 XU Tong, SONG Chongming, XIE Chunfu, et al. Compensation of primary frequency regulation capacity of coal-fired turbine-generator set with the change of backpressure[J]. Energy Conservation Technology, 2017, 35(6):542-545, 568 [25] 徐彤, 周云, 王新雷. 300 MW级热电联产机组调峰能力研究[J]. 中国电力, 2014, 47(9):35-41 XU Tong, ZHOU Yun, WANG Xinlei. Research on peak regulation capability of 300 MW combined heat and power plant[J]. Electric Power, 2014, 47(9):35-41 |