中国电力 ›› 2023, Vol. 56 ›› Issue (6): 107-113,131.DOI: 10.11930/j.issn.1004-9649.202212028

• 新能源 • 上一篇    下一篇

微电网调度模型的寻优性能与求解效率改进优化

贾宏刚1, 王主丁2, 岳园园1, 严欢1, 闫娜1, 曹强飞1   

  1. 1. 国网陕西省电力有限公司经济技术研究院,陕西 西安 710065;
    2. 重庆大学 输配电装备及系统安全与新技术国家重点实验室,重庆 400044
  • 收稿日期:2022-12-07 修回日期:2023-05-06 发布日期:2023-07-04
  • 作者简介:贾宏刚 (1982—),男,通信作者,硕士,高级工程师,从事电网规划、电力需求侧研究,E-mail:benjhg@163.com;王主丁 (1964—),男,博士,教授,IEEE高级会员,从事电力系统可靠性、规划、运行与优化,E-mail:348402467@qq.com;岳园园 (1992—),女,硕士,工程师,从事电网规划,E-mail: yueyuanyuan0913@163.com
  • 基金资助:
    国家自然科学基金资助项目(U2066209);国网陕西电力有限公司科技项目(5226JY200008)

Optimization Performance and Efficiency Improvement of Microgrid Scheduling Model

JIA Honggang1, WANG Zhuding2, YUE Yuanyuan1, YAN Huan1, YAN Na1, CAO Qiangfei1   

  1. 1. State Grid Shaanxi Electric Power Company Limited Economic & Technical Research Institute, Xi’an 710065, China;
    2. State Key Laboratory of Power Transmission and Distribution Equipment & System Security and New Technology, Chongqing University, Chongqing 400044, China
  • Received:2022-12-07 Revised:2023-05-06 Published:2023-07-04
  • Supported by:
    This work is supported by National Natural Science Foundation of China (No.U2066209) and Science & Technology Project of State Grid Shaanxi Electric Power Co., Ltd. (No.5226JY200008).

摘要: 针对微电网优化管理,提出一种基于自适应混合差分进化算法的微电网优化调度策略。首先,考虑电费成本、储能调节成本、用户不适度成本和响应补贴收益,建立以日综合用电成本最小为目标的优化模型;然后,针对标准差分进化算法全局寻优能力不足、求解效率有待提高的问题,对缩放因子和交叉算子进行优化改进,形成自适应混合差分进化算法;最后,以微电网系统为例,进行储能和需求响应的运行优化及算例对比分析。结果表明:所提方法适用于多场景计算,并具有较高的寻优性能和求解效率。

关键词: 微电网, 需求响应, 综合用电成本, 自适应混合差分进化算法

Abstract: For the optimal management of microgrid, this paper proposes a microgrid optimal scheduling strategy based on adaptive hybrid differential evolution algorithm. First of all, considering the cost of electricity charges, the cost of energy storage regulation, the user’s inappropriate cost and the benefit of response subsidies, an optimization model with the goal of minimizing the daily comprehensive power consumption cost is established; Then, aiming at the problem that the global optimization ability of the standard differential evolution algorithm is insufficient and the solution efficiency needs to be improved, the scaling factor and crossover operator are optimized and improved to form an adaptive hybrid differential evolution algorithm; Finally, taking the micro grid system as an example, the operation optimization of energy storage and demand response and the comparative analysis of calculation examples are carried out.The results show that the proposed method is suitable for multi scenario computing and has high optimization performance and solving efficiency.

Key words: microgrid, demand response, comprehensive electricity cost, adaptive hybrid differential evolution algorithm